
University of Minho
School of Engineering

Duarte Nuno Pereira Moreira

6G - Trust Controller

october 2024

University of Minho
School of Engineering

Duarte Nuno Pereira Moreira

6G - Trust Controller

Masters Dissertation
Master’s in Informatics Engineering

Dissertation supervised by
António Luís Duarte Costa

october 2024

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

Acknowledgements

Write your acknowledgements here. Do not forget to mention the projects and grants that you have bene-

fited from while doing your research, if any. Ask your supervisor about the specific textual format to use.

(Funding agencies are quite strict about this.)

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, october 2024

Duarte Nuno Pereira Moreira

iii

Abstract

With the continuous evolving scenario of 6G networks, characterized by ubiquitous connectivity, decen-

tralized artificial intelligence, and augmented service offerings, the need for robust trust management

mechanisms is essential. This thesis addresses the challenges of ensuring trust and security in a multi-

stakeholder environment by proposing and implementing a Trust Controller architecture. The Trust Con-

troller operates within a broader Trust Manager framework, enforcing trust policies, evaluating the credibility

of various network operators and services, and mitigating risks associated with the decentralized and open

nature of future networks.

The suggested solution makes use of blockchain technology to develop a reputation-based trust man-

agement system that is transparent and resilient to single points of failure. This approach makes it easier

for providers and their services to be deployed securely in 6G networks by determining their credibility

based on a set of trust characteristics.

This thesis presents a detailed architecture of the Trust Controller, including integration modules for

external sources management, and demonstrates its functionality through practical use cases. These

examples illustrate the workflow from service activation to trust level calculation and blockchain registration,

highlighting the effectiveness of the system.

Apart from the principal contributions, this work also describes possible future improvements that

could be made, like enhancing the algorithm used to calculate the trust level and fine-tuning the integration

with the Domain Controller entity to improve the collection of metrics events. The results and interactions

presented in this thesis provide a comprehensive view of the system’s capabilities and try to open the way

for future research and development in trust management for 6G networks.

Keywords 6G networks, multi-provider, network slices, trust management, blockchain, trust controller,

trust metrics, trust evaluation

iv

Resumo

Com o cenário em constante evolução das redes 6G, caracterizado por uma conectividade ubíqua, in-

teligência artificial descentralizada e ofertas de serviços aumentadas, a necessidade de mecanismos ro-

bustos de gestão de confiança é essencial. Esta tese aborda os desafios de garantir confiança e segurança

em um ambiente de múltiplas partes interessadas, propondo e implementando uma arquitetura de um

Controlador de Confiança. Este Controlador de Confiança opera dentro de um quadro mais amplo de um

Gestor de Confiança, aplicando políticas de confiança, avaliando a credibilidade de vários operadores de

rede e serviços, e mitigando os riscos associados à natureza descentralizada e aberta das redes futuras.

A solução sugerida utiliza a tecnologia blockchain para desenvolver um sistema de gestão de confiança

baseado em reputação que é transparente e resiliente a pontos únicos de falha. Esta abordagem facilita

a implantação segura de provedores e dos seus serviços em redes 6G, determinando a sua credibilidade

com base num conjunto de características de confiança.

Esta tese apresenta uma arquitetura detalhada do Controlador de Confiança, incluindo módulos de

integração para gestão de fontes externas, e demonstra a sua funcionalidade através de casos práticos.

Esses exemplos ilustram o fluxo de trabalho desde a ativação do serviço até o cálculo do nível de confiança

e o seu registo na blockchain, destacando a eficácia do sistema.

Além das contribuições principais, este trabalho também descreve possíveis melhorias futuras, como

o aperfeiçoamento do algoritmo utilizado para calcular o nível de confiança e o ajuste da integração

com a entidade Controlador de Domínio para melhorar a recolha de eventos de métricas. Os resultados

e interações apresentados nesta tese fornecem uma visão abrangente das capacidades do sistema e

procuram abrir caminho para futuras pesquisas e desenvolvimentos na gestão de confiança para redes

6G.

Palavras-chave redes 6G, multi-provedores, fatias de rede, gestão de confiança, blockchain, contro-

lador de confiança, métricas de confiança, avaliação de confiança

v

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives . 2

1.3 Methodology . 2

1.4 Summary of Contributions . 3

1.5 Thesis Structure . 3

2 State of the Art 5

2.1 6G Networks . 5

2.1.1 Comparison between 5G and 6G . 7

2.1.2 6G Network Vision . 8

2.2 Trust . 10

2.2.1 Trust definition . 11

2.2.2 Trust in a Multi-Stakeholder Scenario . 12

2.2.3 Trust Metrics and Trust Calculation . 12

2.2.4 Trust Service Level Agreement . 14

2.3 Distributed Ledger Technology . 15

2.3.1 Blockchain . 16

2.3.2 Smart Contracts . 18

2.4 Zero Touch Network & Service Management . 19

2.5 Related Work . 21

2.5.1 Work Foundation . 21

2.5.2 Other Works . 23

3 Trust Manager 25

3.1 Introduction . 25

vi

3.2 Architecture . 26

3.3 Workflows . 27

3.3.1 Trust Deployment and Activation Request 28

3.3.2 Trust Deactivation Request . 29

3.3.3 Level of Trust Treatment . 30

4 Internal Architecture 32

4.1 End-To-End Trust Controller . 33

4.1.1 E2E Trust Controller . 34

4.1.2 Trust Provider Score . 36

4.1.3 E2E PSM Integration . 37

4.2 Domain Trust Controller . 38

4.2.1 Trust Controller . 39

4.2.2 Trust Metric Processor . 40

4.2.3 Trust Service Score . 41

4.2.4 Integration Modules: PSM Integration . 42

4.2.5 Integration Modules: SLA Integration . 43

4.2.6 Integration Modules: Domain Integration 44

4.3 Data Model . 46

4.3.1 E2E Level . 46

4.3.2 Domain Level . 48

4.3.3 Common . 49

4.4 Data Objects . 49

4.5 External Integrations . 50

4.6 Level of Trust Model: Analysis and Computation . 52

4.6.1 E2E Level . 52

4.6.2 Domain Level . 53

5 Implementation 56

5.1 Work Methodology . 56

5.2 Technological Choices . 57

5.3 Code Structure . 58

5.4 Development Phases . 58

vii

5.4.1 Phase 1: Database Implementation . 58

5.4.2 Phase 2: E2E Implementation . 59

5.4.3 Phase 3: Partial Domain Implementation 60

5.4.4 Phase 4: Domain and SLA Integration Implementation 60

5.4.5 Phase 5: Workflow Testing . 62

5.5 Critical Decisions . 62

6 Tests and Results 64

6.1 Unit and Integration Tests . 64

6.2 Workflow Tests . 65

6.3 Practical Example . 66

7 Conclusions and Future Work 70

7.1 Conclusions . 70

7.2 Future Work . 71

A Support work 78

A.1 External Integrations E2E Level . 78

A.1.1 Exposed interfaces . 78

A.1.2 Consumed Interfaces . 79

A.2 External Integrations Domain Level . 79

A.2.1 Exposed Interfaces . 79

A.2.2 Consumed Interfaces . 80

A.3 Workflows . 82

A.4 Data Objects . 84

A.4.1 External Data Objects . 84

A.4.2 Internal Data Objects . 86

A.5 Database Model Information . 90

A.5.1 Domain Level . 90

B Details of results 91

B.1 Test Plan . 91

B.1.1 Unit Tests . 91

B.1.2 Integration Tests . 91

viii

B.1.3 Workflow Tests . 92

ix

List of Figures

1 Global mobile data traffic forecast by ITU. Overall mobile data traffic is estimated to grow

at an annual rate of around 55 percent in 2020–2030 to reach 607 exabytes (EB) in

2025 and 5,016 EB in 2030. Source: [9] . 6

2 Evolution of mobile wireless systems. Source: [10] 7

3 6G technology architecture. Source: [16] . 10

4 Centralized and Distributed Ledger comparison. Source: [26] 15

5 Merkle tree example. Source: [33] . 17

6 ZSM framework reference architecture. Source: [37] 20

7 General Framework Mapping. Source:[44] . 26

8 Trust Deployment/Activation Workflow. Source:[8] 29

9 Trust Deactivation Workflow. Source:[8] . 30

10 Level of Trust Treatment Workflow. Source:[45] . 31

11 Comprehensive system diagram displaying all integrated components from the Trust

Controller point of view. 33

12 E2E Trust Controller internal architecture . 34

13 E2E Trust Controller module details . 35

14 E2E Trust Provider Score module details . 36

15 E2E PSM Integration module details . 37

16 Domain Trust Controller internal architecture . 38

17 Domain Trust Controller module details . 39

18 Trust Metric Processor module details . 40

19 Trust Provider Score module details . 42

20 PSM Integration module details . 43

21 SLA Integration module details . 44

x

22 Domain Integration module details . 45

23 Entity-Relationship diagram of the E2E database . 47

24 Domain Database Entity-Relationship Diagram (simplified) 48

25 Domain Database Enumerations . 49

26 E2E and Domain Common Data Model . 49

27 E2E and Domain Context External Integrations . 51

28 Refactorized Domain Integration Module . 61

29 Simulation of an activation request using Postman. 67

30 New service created in the database with active status. 67

31 SLA requirements for latency and throughput metrics. 67

32 Received metric events and their evaluation. 68

33 New Service LoT calculated and registered in the database. 68

34 New Service LoT with status updated to active. 68

35 Data Objects On boarding and Offers Registration Workflow 82

36 Security and Trust Deployment Workflow . 83

37 Security and Trust Termination Workflow . 84

38 Domain Database Entity-Relationship Diagram . 90

39 Unit Test Plan Preview . 91

40 Integration Test Plan Preview . 91

41 Workflow Test Plan Preview . 92

xi

List of Tables

1 Comparison of 5G and 6G Characteristics . 8

2 Trust rank classification . 52

3 E2E Trust Controller exposed interface (1/3) . 78

4 E2E Trust Controller exposed interface (2/3) . 78

5 E2E Trust Controller exposed interface (3/3) . 78

6 E2E PSM consumed interface (1/3) . 79

7 E2E PSM consumed interface (2/3) . 79

8 E2E PSM consumed interface (3/3) . 79

9 Domain TMP exposed interface (1/2) . 79

10 Domain TMP exposed interface (2/2) . 80

11 Domain PSM exposed interface (1/2) . 80

12 Domain PSM exposed interface (2/2) . 80

13 Domain PSM consumed interface . 80

14 Domain TSLA consumed interface . 80

15 Domain Controller consumed interface (1/2) . 81

16 Domain Controller consumed interface (2/2) . 81

17 Data Object: e2e_trust_selected_providers_do (activation use case) 84

18 Data Object: e2e_trust_selected_providers_do (deactivation use case) 85

19 Data Object: Type Providers . 85

20 Data Object: e2e_providers_sc_activated_do (list of) 85

21 Data Object: e2e_provider_lot_do . 85

22 Data Object: e2e_service_lot_do . 85

23 Data Object: domain_trust_activation_do . 85

24 Data Object: domain_trust_deactivation_do . 86

xii

25 Data Object: dtsla_do . 86

26 Data Object: domain_service_lot_do . 86

27 Data Object: domain_available_metrics_do . 86

28 Data Object: Type AvailableMetrics . 86

29 Data Object: e2e_tc_slot_do . 86

30 Data Object: e2e_tc_tps_do and e2e_tps_do (first request) 87

31 Data Object: e2e_tc_retries_do . 87

32 Data Object: domain_psm_do . 87

33 Data Object: domain_sla_config_do . 87

34 Data Object: domain_sla_enforce_do . 87

35 Data Object: domain_tc_tracking_do (objective metric) 87

36 Data Object: domain_tc_tracking_do (subjective metric) 88

37 Data Object: domain_tc_tss_do and domain_tss_do (first request) 88

38 Data Object: domain_tc_retries_do (TSS module use case) 88

39 Data Object: domain_tc_retries_do (remaining modules use case) 88

40 Data Object: domain_tom_do (first request) . 88

41 Data Object (retry requests): domain_tom_do, domain_tsm_do, domain_tss_do and

e2e_tps_do . 88

42 Data Object: domain_tsm_do (first request) . 89

43 Data Object: e2e_tc_error_do and domain_tc_error_do 89

xiii

Acronyms

5G Fifth Generation.

6G Sixth Generation.

ACID Atomicity, Consistency, Isolation, and Durability.

AI Artificial Intelligence.

API Application Programming Interface.

AR Augmented Reality.

CTTC Centro Tecnológico de Telecomunicaciones de Cataluña.

DAG Directed Acyclic Graph.

DC Domain Controller.

DLT Distributed Ledger Tecnology.

E2E End-to-End.

eMBB Enhanced Mobile Broadband.

ER Entity-Relationship.

ETSI European Telecommunications Standards Institute.

IDE Integrated Development Environment.

IoT Internet Of Things.

ITU International Telecommunication Union.

xiv

JSON JavaScript Object Notation.

LoT Level Of Trust.

ML Machine Learning.

mMTC Massive Machine-Type Communications.

NSF Network Security Funciton.

NSI Network Security Instance.

NSSO Network Slicing Security Orchestrator.

OV Objective Value.

P2P Peer-to-Peer.

PDL Permissioned Distributed Ledger.

PII Personally Identifiable Information.

PSM Permissioned Distributed Ledger Service Manager.

QoS Quality Of Service.

RAN Radio Access Network.

REK Reputation-Experience-Knowledge.

REST Representational State Transfer.

SC Smart Contract.

SLA Service Level Agreement.

SO Security Orchestrator.

SOTA State of the Art.

SP Security Probes.

xv

TBps Terabyte Per Second.

TC Trust Controller.

THz Terahertz.

TLA Trust Level Agreement.

TM Trust Manager.

TMP Trust Metric Processor.

TOM Trust Objective Metrics.

TPS Trust Provider Score.

TR Trusted Risk.

TSLA Trust Service Level Agreement.

TSLAP Trust Service Level Agreement & Policies.

TSM Trust Subjective Metrics.

TSS Trust Service Score.

URLLC Ultra-Reliable and Low Latency Communications.

VR Virtual Reality.

XR Extended Reality.

ZSM Zero-touch network Service Management.

xvi

Chapter 1

Introduction

This chapter serves as an introductory framework, offering a contextualization of the central problem within

the fields of Sixth Generation (6G) Networks, Trust, and Blockchain. Furthermore, it points out the core

motivations that gave rise to this dissertation. Following this preliminary exploration, the objectives to be

realized by the end of this research are outlined. Then, the research methodology and approach adopted in

this project are detailed. Lastly, this chapter delineates the comprehensive structure that will be observed

throughout the course of the dissertation, offering a preview of the content and its organization.

1.1 Context and Motivation

As the field of 6G networks continues to expand and embrace open and disaggregated approaches[1],

trust management assumes a pivotal role in safeguarding the security and service quality delivered by a

multitude of stakeholders. Traditionally, trust in suppliers predominantly depends on their established rep-

utation. However, in the realm of multi-vendor environments, dependence on reputation alone encounters

formidable scalability challenges.

In response to this pressing issue, Distributed Ledger Tecnology (DLT)[2], specifically Blockchain [3][4],

emerges as a promising remedy to establish a robust framework of trust within the telecommunications

networks featuring multiple contributors[5][6]. This approach offers the prospect of creating a transparent

and dependable system where unalterable records of transactions and contractual agreements find a

secure repository. This not only increases reliability but also simplifies the management of trust within the

complex domain of multi-party collaboration.

The development of a 6G - Trust Controller (TC) assumes critical significance as it seeks to explore

the potential of Blockchain technology in the governance of trust in the highly dynamic and heterogeneous

terrain of 6G networks. This dissertation consists on an investigative journey and the practical implemen-

tation of this pioneering solution, with the objective of contributing to the safe and efficient evolution of

1

next-generation networks.

1.2 Objectives

Within the scope of this project, the core activities are directed toward the design, development and valida-

tion of a TC. This TC’s primary function is to compute and oversee the trustworthiness of service providers

actively engaged in the 6G network. Notably, it makes use of Blockchain technology to ensure decentral-

ization, immutability, transparency, and verifiability of trust-related data. The main objective is to establish

a system capable of promptly furnishing precise information concerning the most dependable suppliers

for meeting specific service requisites within the 6G network.

To achieve this objective, the key actions encompass the implementation of trust calculation algorithms

and seamless integration with external sources, especially the Blockchain to ensure secure data storage.

The outcomes of this thesis encompass the development of a fully functional and efficient TC. This

TC is poised to enhance the quality and security of 6G services by delivering accurate insights into the

reliability of service providers. Additionally, it is expected to foster decentralization and transparency in

the realm of trust management, thereby making a substantial contribution to the successful evolution of

6G networks within the multifaceted landscape of multiple vendors. This project assumes a pivotal role in

enabling dependable and efficient services in the forthcoming era of telecommunications.

1.3 Methodology

In line with standard dissertation methodology, the research process started with an exhaustive literature

review, focusing on the central themes of the study. The primary objective of this phase was to identify

pertinent articles that could provide valuable insights for the advancement of the project. To facilitate this

effort, the resources of the Google Scholar search engine were used, as well as the knowledge housed at the

Centro Tecnológico de Telecomunicaciones de Cataluña (CTTC). The exploration primarily encompassed

the following leading databases: IEEE Xplore, ACM Digital Library arXiv, Springer, and ResearchGate.

To ensure the rigor of the search, a systematic approach was adopted. The shearch was limited

to articles published within the preceding five years and employed specific keywords, including but not

limited to: ”trust controller,” ”trust manager,” ”5G and beyond networks,” ”6G networks,” ”blockchain,”

and ”DLT.” Furthermore, citations presented on these papers were too considered important targets to

analyse.

Subsequent to this comprehensive literature review, the research workflow transitioned into the stages

2

of prototype design, implementation, and rigorous testing. The final phase of the methodology involved a

critical analysis of the outcomes derived from the project.

1.4 Summary of Contributions

This work has received recognition and has resulted in some contributions in the field of multi-provider 6G

network trust management over the past year. To emphasize the potential significance and influence of

this dissertation, a summary of their contributions is provided in this section:

• Paper published resulting from this dissertation (D.Moreira): [7]

• Paper published in collaboration with other members of the research group (P.Alemany): [8]

• Trust Controller Implementation (software component)

Firstly, a paper that proposes an architecture for the TC was published, detailing a crucial component

intended to monitor trust metrics and guarantee the dependability of service providers. In the course of

this thesis, this architecture was implemented and tested, proving its usefulness.

Additionally, contributions were made to another paper, authored and published by the CTTC team,

where the Trust Manager (TM) is fully described. The TC is included in this abstract entity, which also

incorporates it into a more comprehensive architecture for security and trust management in open and

fragmented 6G networks.

These articles highlight the work and acknowledgement within the scientific community in addition to

providing confirmation of the developed work. This thesis expands on the information presented in these

articles and attempts to advance the State of the Art (SOTA) in trust management for next-generation

networks by describing the theoretical foundations and practical implementation of the TC.

1.5 Thesis Structure

This document is structured into seven chapters, with each chapter adhering to a specific framework.

In the first chapter Introduction, is provided an in-depth introduction to the project. Its defined the

project’s context and motivation, pointed out the primary objectives to achieve, elaborated the research

methodology adopted, and offered a detailed overview of the dissertation’s structure.

The second chapter State of the Art serves as the foundation for the dissertation. It starts by elucidating

fundamental concepts and topics essential for comprehending the project. Although not exhaustive, this

3

chapter provides adequate knowledge of the major concepts in the area, necessary to support the rest

of the dissertation. Furthermore, this chapter encompasses the wealth of knowledge acquired through

extensive research within the project’s domain, synthesizing and presenting the insights gathered from

prior work.

The third chapter, Trust Manager, introduces the abstract component within which the TC is embedded.

It provides an overarching view of the project by describing the main workflows involving this component.

The fourth chapter, Internal Architecture, focuses on presenting the detailed constitution of the internal

components of the TC and its overall architecture. This includes integrations, data models, data objects,

and other key elements.

The fifth chapter, Implementation, delves into the methodology adopted during the project’s develop-

ment and the technological choices made, providing insights into the planning and organizational aspects.

It also details the practical realization of the conceptual framework presented. It offers a comprehensive

overview of how theoretical concepts were translated into a functional system, detailing code organization,

development methodologies, and critical decisions made during the implementation.

The sixth chapter, Tests and Results , describes the rigorous testing processes employed to validate

the functionality of the developed components. It presents an overview of the testing methodologies, test

cases, and corresponding results obtained during the evaluation phase.

The seventh and last chapter, Conclusion and Future Work, will provide concluding remarks on the

project’s outcomes and propose potential improvements for future research and development.

4

Chapter 2

State of the Art

In this chapter, we will delve into a comprehensive and detailed analysis of various fundamental concepts

and topics essential for understanding the entire project. Initially, we will explore the notion of 6G networks,

which serves as the foundation for the TC. Following that, we will define the concept of Trust to gain insights

into its objective and subjective aspects. The topic of Blockchain will also be examined since it forms the

basis for the TC’s database. And after that, we have a glance and explore the architecture inherent to the

TM. Lastly, we will present some related studies that have, in various ways, attempted the development of

a TM or Trust Model.

2.1 6G Networks

6G[9][10] is the successor to Fifth Generation (5G) telecommunications technology. Although 5G is still

being commercialized over the world and 6G is not yet a functioning technology it’s important to note that

major infrastructure companies, such as, Huawei, Nokia and Samsung [11] have already committed to

the development of this next generation network and it’s safe to say that this topic is currently on an early

concept research phase, being the deployment and commercial phase schedule to something arround

2030.

According to [12], this new era will consist on the digital, physical and human world seamlessly fuse to

trigger extrasensory experiences. Intelligent knowledge systems will be combined with robust computation

capabilities to make humans endlessly more efficient and redefine how we live, work and take care of the

planet. In [13], authors share the idea that 6G will build on, and extend beyond, our existing 5G ecosystem

to foster new innovations which deliver value to customers and simplify network operation. Concurrent to

this journey towards the 6G era is the development of network disaggregation and an open, interoperable

cloud native architecture.

However, these evolutions do not happen just because they do, but because there are limitations

5

Figure 1: Global mobile data traffic forecast by ITU. Overall mobile data traffic is estimated to grow at an

annual rate of around 55 percent in 2020–2030 to reach 607 exabytes (EB) in 2025 and 5,016 EB in

2030. Source: [9]

to what each network generation can support, and in this case, novel service requirements and scale

increases are the driving force behind the evolution of the 5G wireless network. The rapid development of

emerging applications results, for example, in a never-ending growth in mobile data traffic. According to the

forecast by International Telecommunication Union (ITU), global mobile data traffic will reach 5 zettabytes

by 2030 [9], as shown in Fig. 1. Upcoming applications (e.g. e-health and autonomous driving) have more

stringent requirements for latency and throughput, which will eventually exceed the limits of 5G networks,

and so, putting constraints on the 5G communication network. It is expected that 5G will reach its limits

in a decade or so and to meet these demands, the main technical objectives for 6G networks, according

to [10], will be:

• Ultra-high data rate (up to 1 Terabyte Per Second (TBps)) and ultra-low latency.

• High energy efficiency for resource-constrained devices.

• Ubiquitous global network coverage.

• Trusted and intelligent connectivity across the whole network.

6

2.1.1 Comparison between 5G and 6G

So far, over the last few years, the world has undergone tremendous developments in information and

communication technologies. And the first technological developments related to 5G networks mainly

targeted three generic and distinct use cases [14]:

• Ultra-Reliable and Low Latency Communications (URLLC): ultra-reliable means reliability of up to

99.999% and low latency means latency in low single-digit milliseconds.

• Enhanced Mobile Broadband (eMBB): concept that focuses on speed, capacity and mobility for new

mobile uses such as high-definition video streaming and immersive Augmented Reality (AR) and

Virtual Reality (VR) on the go.

• Massive Machine-Type Communications (mMTC): concept based on connecting large numbers of

devices in a given area (up to 1 million devices per square kilometer) that have low data rate

requirements and low energy consumption.

As mentioned by [15], 5G network technology came to provide a high standard infrastructure enabling

a variety of technologies such as: self-driving cars, Artificial Intelligence (AI), mobile broadband commu-

nication, Internet Of Things (IoT) and smart cities. Looking at the past, as highlighted in Fig. 2, it’s clear

that each generation optimizes the use cases of the previous generation and introduces new ones. This

will continue to be the case. 6G will build on top of 5G in terms of many of the technological and use case

aspects, driving their adoption at scale through optimization and cost-reduction. At the same time, 6G will

enable new use cases[12].

Figure 2: Evolution of mobile wireless systems. Source: [10]

7

To have an idea of what this generation change will consist of, lets us compare the main specifications

and technologies in both 5G and 6G presented on Table 1. As we can see this jump will open the door

for a new communication system providing more capacity, extremely low latency, high data transmission,

secure error-free communication and full wireless coverage. More can be found on [15] work.

Table 1: Comparison of 5G and 6G Characteristics

Characteristic 5G 6G

Operating frequency 3 - 300 GHz up to 1 THz

Uplink data rate 10 Gbps 1 Tbps

Downlink data rate 20 Gbps 1 Tbps

Reliability 10−5 10−9

Maximum mobility 500 km/h 1000 km/h

Processing delay 100 ns 10 ns

Traffic capacity 10 Mbps/m2 1 - 10 Gbps/m2

Localization precision 10 cm on 2D 1 cm on 3D

Time buffer Not real-time Real-time

Center of gravity user service

Satellite integration No Fully

AI integration Partially Fully

Automation integration Partially Fully

With this values in mind, it is expected that 6G can possibly overcome 5G and improve the network

performance, integrate different technologies and increase the Quality Of Service (QoS) providing super-

smart society with everything connected to the network.

2.1.2 6G Network Vision

As mentioned previously, the number of connected devices to the network, as well as the traffic are both

growing and increasing rapidly, which ultimately increases the amount of data that flows through the

system. Besides that, the areas of usability of the network are growing exponentially too.

The system of the future, i.e., 6G, is expected to provide seamless and energy-efficient connectivity

around the globe, which is almost impossible through current network architecture [16], therefore, a new

one needs to be re-designed and built. As already said, 6G is scheduled to launch commercially in 2030,

and currently, it is in the pre-development stage, so it is unrealistic to illustrate the architecture of 6G

accurately. But despite that, Fig. 3 can show us the known components of 6G in its schematic architecture.

8

For better understanding of this new technology and its components (Fig. 3), we can subdivide it into three

major parts Network Coverage, Network Capabilities, and Service Provisioning.

• Network Coverage: network coverage is defined as the area in which you have access to the respec-

tive network and this area is directly proportional to usability, that is, if we connect to more sub-

scribers, then greater network coverage is necessary for effective and efficient network usability[10].

As we already know, the coverage provided by the current network is quite extensive at terrestrial

level, allowing access in several urban regions, but both the usability and coverage are expected

to increase by many folds with the futuristic 6G networks. Despite that, this network is limited as

it doesn’t allow for it’s own expansion under sea and to high altitudes such as in planes and satel-

lites. According to [17], future use case scenarios and applications will demand that the network

can provide network access under the deep sea and at high altitudes. Clearly that along with this,

the future 6G network is expected to improve connectivity at a territorial level as well.

• Network Capabilities: as has been mentioned, the 5G network will probably reach his limits and

not be able to support the demand of modern and future services, that said, the next generation

network should present a capability many times stronger than the current. To categorize the ca-

pabilities of a network we can look at some major factors such as: transmission rate, frequency

band management, resource management, and efficient use of underlying network infrastructure

for modern applications. In Fig. 3, we can see the major supporting features of 6G that will encour-

age the development of modern applications: Terahertz (THz) network speed, multiple frequency

band support, cell-less architecture, intelligent Radio, Distributed AI, Real-Time edge, and Virtual

Network, Virtual Storage, and Virtual Compute. These are more detailed and explored on [16].

• Service Provisioning: service provisioning can be defined as the act of setting up a particular service

for an end-user. And 6G networks have already aroused the interest of several researchers in

the creation of some advanced services. This will encourage the new generation of developers

to construct advanced services by providing them underlying network features. Some of these

advanced services that are in demand in the near future and that are going to be supported by the

6G network are: Smart Healthcare, Autonomous Transportation System, Smart Security Systems,

Extended Reality (XR) and Quantum Processing [16].

Another very important and adjacent subject of 6G wireless communications will be its areas of ap-

plication and the ability to improve and transform existing areas. These proposed applications will reduce

deployment costs and increase the flexibility of our communication technology [10]. Some examples of

9

Figure 3: 6G technology architecture. Source: [16]

these applications are: Smart Society, Smart Healthcare, Wireless Brain–Computer Interactions, Con-

nected Robotics and Autonomous Systems, Nervous System Information Transfer, Manufacturing and Its

Automation, Blockchain and Distributed Ledger, Multi‑sensory XR Applications, etc, [16]. As one of them,

Blockchain and Distributed Ledger, meets the purpose of this work, a brief introduction is presented:

A blockchain is a list of records called blocks that are closely linked to each other using cryptography

[10]. Based on 6G wireless communication, a blockchain is resistive in updating the information. It is a

type of distributed ledger that is used to record the whole process between the two users and transfers

the transaction values between them, without the requirement of any backbone like central coordination.

It is based on an electronic ledger that keeps the complete data record, and it will be transmitted using a

6G wireless communication system [16].

2.2 Trust

In the giant landscape of advanced networking, the concept of trust can be considered a keystone, moving

through the complex web of connections and relationships in the evolving scenario of 6G technology.

This section tries to explain and clarify the abstract and subjective concept of trust in this specific realm.

10

From a foundational exploration of the very essence of trust and its definition to its dynamic role in a

multi-stakeholder scenario, following into the metrics and calculations that underpin this critical element.

Moreover, the concept of Trust Service Level Agreement (TSLA) its mentioned, as it is expected to be a

important component, since its objective is to align trust objectives with service expectations.

One of the focal point of this project is succinctly encapsulated in the quest for a singular, quantifiable

measure of trust — a mathematical value that transforms the subjective into the objective. As the ultimate

aim, this value should represent trustworthiness as a percentage that goes from 0% (i.e., not trustworthy)

to 100% (i.e., trustworthy), offering clarity to stakeholders, especially clients. In essence, it seeks to em-

power decision-makers to measure the risk associated with trusting a service provider, facilitating informed

choices in a landscape full of choices and alternatives.

2.2.1 Trust definition

In human communities, the unpredictability of strangers behavior introduces uncertainty, leading individ-

uals to steer clear of interactions with those they do not trust. Trust plays a pivotal role in facilitating

interactions within such uncertain environments. This concept extends to the realm of technology, em-

phasizing that trust is a vital factor for successful online interactions, as reinforced in [18], and should

be a key criterion for service selection. Trust seems to emerge as the most intricate bond between en-

tities, characterized by its highly abstract, volatile nature, and the formidable challenges associated with

its measurement and management. Yet anyway, as [5] work highlights it becomes necessary to have a

transparent and reliable way for service clients to evaluate and identify whether a provider is trustworthy

enough to participate in a service deployment. This is a complex decision to make due to the difficulty of

bringing a subjective concept such as “trust” into an objective field such as network management.

Trust is a concept that has been considered as a key foundation for decision making in different areas

and computer science is one of them. Although is definition varies, in all cases the same idea is shared:

trust is a relationship in which an entity, often called the trustor, depends on someone or something, called

the trustee, based on a given criterion [19], and for this case its value can be measured by trust metrics.

The calculated value of trust is mentioned as Level Of Trust (LoT) throughout this project.

Despite this definition being relatively close to expected, [20] work also presents some interesting

correlation definitions worth mentioning:

• Definition 1: Trust is referred to the recognition of entity’s identity and the confidence on its behav-

iors. Trust is subjective behavior since entity’s judgement is usually based on its own experiences.

Trust is described by trust value.

11

• Definition 2: Trust value or trust degree is used to measure the degree of trust. Trust value often

depends on special time and special context.

• Definition 3: Direct trust means trust that is obtained by entities’ direct interaction.

• Definition 4: Indirect trust or recommended trust means trust that is obtained from credible third

party who has direct contact with the designated one. Recommended trust is one important way

to obtain trust degree of unknown entities.

2.2.2 Trust in a Multi-Stakeholder Scenario

As been claimed until now, 6G ecosystems will grow in such manner caused by the increasing virtualiza-

tion and disaggregation of networks that the proliferation of connected devices and diverse applications

will be significant. This trend leads to a multi-vendor situation appearing in the telco arena (i.e., hard-

ware suppliers, software function providers, vendors, operators) that communications service providers

will need to deal with. This multi-stakeholder scenario complicates provisioning and the established rela-

tionships among actors based on operation agreements - Service Level Agreement (SLA) - that define the

requirements, penalties, and prices that generate a certain level of trust among them[5]. That said, the

6G threat vector will be defined by 6G architectural disaggregation, open interfaces and an environment

with multiple stakeholders. And, as stated in [19] and [21], establishing trust in such an open and diverse

ecosystem is a cornerstone for a global adoption of the technology and should be assured across devices,

sub-networks, heterogeneous-cloud, applications and services.

As multiple entities with different interests and responsibilities participate in a common network, build-

ing a foundation of trust becomes instrumental in achieving collective goals and maintaining a peaceful

and efficient ecosystem. This bridge can be expected to bring benefits such as: enhanced communication,

risk mitigation, efficiency and productivity, long-term relationships, positive reputation, among others.

2.2.3 Trust Metrics and Trust Calculation

In [20] a trust classification method is presented. Authors mention that trust can be divided into different

categories according to different standards:

• According to attributes: identity trust and behavior trust

• According to obtaining way: direct trust and recommended trust

• According to role: code trust, third party trust and execution trust, etc

12

• According to based theory: subjective trust and objective trust

The project associated with this work follows the last mentioned classification where the basis of a trust

value comes from the combination of objective and subjective trusts. This implies the existence of objective

and subjective trust metrics. The objective ones are defined as quantifiable and measurable data that is

not influenced by personal feelings, interpretations, or prejudice. These metrics are based on factual data

and are commonly used for making informed decisions, assessing performance, or benchmarking against

standards. As outlined in [22], examples of such metrics include response time, latency, execution time,

throughput, reliability, domain-specific measurable properties, and other services’ measurable properties.

On the other hand, subjective metrics are referent to evaluations or measurements influenced by personal

feelings, interpretations, or individual perspectives. These metrics are based on personal opinions and

perceptions and are often utilized to evaluate user satisfaction, personal preferences, or qualitative ex-

periences. Examples can include user satisfaction ratings, perceived QoS, user reviews, and subjective

evaluations.

Regarding the calculation of the trust value - or level of trust - the methods currently used, among

the few that currently exist, are diverse and depend greatly on the type of trust model adopted and in

turn, on the type of associated metrics. Take as an example the work [23], where the authors opt for an

implementation based on the threefold Reputation-Experience-Knowledge (REK) model that presents, as

the name suggests, three main attributes:

• Knowledge: trustor’s general understanding about the trustee

• Experience: trustor’s previous experience with the trustee

• Reputation: public opinion on the trustee

At this point, it is necessary to take into account the application, the environment and the problem

in which we find ourselves and, depending on this, establish the most suitable trust metrics for each

trust attribute so that an analytical value can be attributed to them, as the authors do, for example, for

knowledge: right to decision making; for experience: right to restrict processing; and for reputation: right to

be informed. Trust metrics that suited the explored use case related to Personally Identifiable Information

(PII)[24], that involves all and any sensible data of a person.

There are numerous methods available to estimate the trust attributes, ranging from numerical meth-

ods, probabilistic methods, and belief theory to data analytics methods such as association rule learning,

classification tree analysis, genetic algorithms, Machine Learning (ML), sentiment analysis, and social net-

work analysis. For this specific case [23], and in most common scenarios, the mathematical approach

13

used to find the trust level between trustor i and trustee j, as later leveraged in this dissertation, involves

assigning weights to each of the trust metrics, taking into consideration the following factors:

Kij = α1K1 + α2K2 + . . .+ αnKn (2.1)

Eij = β1E1 + β2E2 + . . .+ βnEn (2.2)

Rij = γ1R1 + γ2R2 + . . .+ γnRn (2.3)

Trustij = θ1Kij + θ2Eij + θnRij (2.4)

Where α,β,γ, and θ, are weighting factors that normalize each metric in between 0 and 1. Kx,

Ex and Rx represent the trust attributes of Knowledge, Experience, and Reputation, respectively. And n

represents the total number of trust metrics for each trust attribute.

2.2.4 Trust Service Level Agreement

A TSLA its a component that plays a crucial role in the management of 6G networks and its said to be a

SLA based on trust parameters or, in other words, trust metrics. Following the idea presented on [5], when

a client seeks a service, they must specify the trust-related criteria that should be met for selecting the

most suitable provider. The idea of TSLA has evolved from the traditional SLA concept. Like mentioned

before, in TSLA the focus is on trust requirements, incorporating factors like reputation or trust metrics

values associated with various actions and the minimum level of trust expected by the client from service

providers. This innovative approach ensures that trust considerations are integrated into the agreement,

outlining the specific expectations and standards for trustworthy service delivery.

Moreover, TSLAs contribute to the transparency and clarity of trust-related interactions, allowing for in-

formed decision-making in selecting service providers. By establishing a clear framework with defined trust

metrics, TSLAs simplify the complex process of evaluating and comparing providers, ultimately enhancing

the trustworthiness of the entire 6G network.

14

2.3 Distributed Ledger Technology

Before talking about blockchain, we can take a step back, and explore the concept of DLT. DLT’s can

be defined as a form of technology used to distribute, exchange, or store data among users via public

or private networks. Basically, it is a database that is stored and located across many nodes situated at

different geographic locations. Each computer in the network is known as a node. Distributed ledgers can

also be thought of as communal datasheets maintained on several distributed nodes[25]. This technology

is centered on distributed systems, meaning that, unlike traditional databases, distributed ledgers have no

central data store or administration functionality, as presented in Fig. 4.

Figure 4: Centralized and Distributed Ledger comparison. Source: [26]

One of the areas where distributed ledgers have been considered is IoT. According to [25] innovative

technologies like cloud computing and big data have been utilized by the IoT bringing greater availability,

accessibility, personalization, precision, and lower-cost delivery of services, and DLT appears to be the

likely next step to be converged with IoT and other smart and connected technologies. Its ability to build

trust through distributed networks without requiring a third party is an advancement that may alter multiple

industries, by potentially fixing major problems and addressing weaknesses and vulnerabilities of today ’s

client/server cloud IoT models. For instance, as mentioned in [27], cloud servers can be disabled by

software bugs, cyber attacks, or other mechanical issues. In contrast, IoT systems that utilize blockchain

technology are not vulnerable to a single point of failure because identical data is maintained on multiple

devices and computers.

The same work [27], also points out that recently, with the blooming of 5G, cloud computing tech-

nology has given the IoT the ability to analyze data and translate information into real-time action and

15

up-to-the-minute knowledge. This unparalleled IoT expansion has generated new means of sharing and

accessing information, including a foundational open data model. However, one of the main vulnerabili-

ties of these new methods of information sharing is a lack of confidence. While centralized architectures

have contributed substantially to IoT growth, when it comes to data transparency, they are opaque and

leave participants questioning how their data will be used. That being said, reimagining the way IoT data

is handled, would empower users to rely on a decentralized, independent, and robust data management

system that guarantees data ownership. Such a system would include, according to [28]:

• Access Control: access is managed using DLT/blockchain-based decentralized, auditable mecha-

nism that ensures data ownership and encrypted information sharing.

• Secure Data Storage: data is maintained in such a way that it is verifiable, immutable, and trusted.

• IoT Compatibility: allows data to be appended by one writer and viewed by multiple readers.

In the world of DLT, diverse categories exist to delineate its diverse applications, from blockchain to

Directed Acyclic Graph (DAG)[29]. For the scope of this thesis, the emphasis is aimed towards blockchain

technology, specifically focusing on a permissioned blockchain. A Permissioned Distributed Ledger (PDL)[30],

in essence, operates on the foundation of restricted access, where participants need to obtain explicit per-

mission to be part of the network. This approach contrasts with public blockchains, offering a more

controlled and regulated environment. The permissioned blockchain is particularly suitable for scenarios

where privacy, scalability, and trust are important requirements.

2.3.1 Blockchain

Blockchain, first introduced in 2008 through the publication ”Bitcoin: A Peer to Peer Electronic Cash

System” [31], represents a decentralized and immutable database ledger. According to [25], it comprises

a continuously growing series of interconnected records, or blocks, secured through cryptography. This is

considered to operate on a Peer-to-Peer (P2P) topology, where participants manage the blockchain network

using private-public key pairs. New data records can be added through mining, a process that involves

solving a consensus problem via distribution. Each block of the network includes a cryptographic hash

of the previous block, a timestamp, and transaction data organized in a Merkle tree[32][33] structure, as

shown in the Fig. 5. Once recorded, every transaction data becomes unalterable without modifying all

preceding blocks. The blockchain’s core unit is a transaction, authenticated by block miners and encrypted

into secure blocks. The synchronization across miners occurs regularly, and consensus mechanisms

16

ensure the ledger maintains the longest chain in case of discrepancies. Merkle trees play a crucial role,

providing secure confirmation of data consistency. These structures condense block transactions through

hierarchical hashing, creating a digital fingerprint for verification. The resulting Merkle Root represents

the ultimate hash of all transactions in a block. This robust framework ensures the integrity, security, and

decentralization of the blockchain, making it a foundational technology with wide-ranging applications.

Figure 5: Merkle tree example. Source: [33]

The concept of blockchain, underscores its fundamental role in revolutionizing future mobile communi-

cation technologies and addressing critical challenges in the domain of data management and connectivity.

In accordance with [10] and as mentioned before, blockchains are characterized as distributed ledger-

based databases, providing a secure platform for registering and updating transactions without the need

for central intermediaries. The inherent features of decentralization, tamper-resistance, and anonymity

make blockchain an ideal candidate for diverse applications, ensuring stronger security features through-

out communication processes. Furthermore, [15] highlights the role of blockchain in managing big data

and organizing connectivity in 6G, emphasizing its utility in spectrum sharing to address the spectrum

requirements of 6G while guaranteeing secure, low-cost, and efficient spectrum utilization.

In a similar way, [9] points that blockchain technology is prepared to play a crucial role in securing

and authenticating future communication systems. Decentralization and transparency contribute to faster

processing, a critical aspect for 6G systems. The virtualization of network resources in 6G necessitates

simultaneous resource allocation and authentication, a role where blockchain is expected to excel. The

adaptive nature of blockchain security aligns with the evolving requirements of different scenarios, such as

ensuring extreme security and privacy when offering services or enabling quick, controlled access during

emergency responses via 6G systems.

In [25] authors recognize IoT as a highly promising technology, yet existing IoT systems often deploy

17

devices with constrained resources, leaving them susceptible to cyber threats. These networks face chal-

lenges in scalability, maintenance complexities, and persistent vulnerabilities related to single points of

failure. Furthermore, the impermanence of IoT data and concerns about data security and privacy com-

pound these issues. In response to these challenges, blockchain technology emerges as a viable solution

due to its inherent decentralization, data creation and storage methodologies, and robust consensus mech-

anisms as mentioned in [34][35]. Farahani’s work[25], highlights that blockchain can effectively address

the limitations of centralized IoT systems. Numerous use cases have demonstrated the applicability of

blockchain across all facets of an IoT ecosystem. Its potential applications include authenticating and

encrypting data in communication networks, managing and securely storing device identifications, and

maintaining the integrity of Cloud data as well as information stored by distributed objects or devices. By

leveraging a distributed network of nodes for P2P data exchange, blockchain significantly reduces the risk

of data compromise, making it highly resistant to unauthorized access. The consensus mechanism inher-

ent in blockchain technology serves as an additional layer of security by preventing compromised nodes

from infiltrating an IoT network and rejecting data from compromised sources, thereby safeguarding data

integrity.

2.3.2 Smart Contracts

Smart Contract (SC)s serve as foundational components within distributed ledgers and blockchain systems.

As defined by both European Telecommunications Standards Institute (ETSI) [36] and in [25], a SC is

a self-executing digital agreement designed to facilitate the seamless transfer of digital assets among

participants, subject to specific conditions on the blockchain. In essence, it automates the enforcement

and execution of contractual terms when predefined conditions are met. The significance of a SC lies in its

ability to deliver transparent execution, permanence, and decentralization, ensuring the secure execution

of programmed logic. In essence, a SC is a snippet of code stored on the blockchain, playing a pivotal role

in fostering a secure and well-coordinated decentralized system.

As for the benefits that SCs offer when merging IoT with blockchain, these are some of the pointed

out in Farahani’s work[25]:

• Autonomic Interactions: Governed by SCs, blockchain allows IoT devices or subsystems to interact

automatically without human intervention, in which there is no need for any traditional central role,

such as governments.

• Contract Execution: SCs, a multiparty agreement stored using blockchain, enables stakeholders

18

to execute contact arrangements when specific criteria are met. SCs are able to automatically

authorize payments when the contractual service requirements have been met.

• Improved Security: Blockchain and SCs can also increase system security by updating device

firmware automatically in order to address vulnerabilities.

• Improved Functionality: Blockchain provides greater functionality through the programmable logic

of SCs and the ability to handle interactions as transactions. SCs also provide security functions

around confidentiality, authentication, and access control to improve IoT security.

2.4 Zero Touch Network & Service Management

The Zero-touch network Service Management (ZSM) is a comprehensive architectural framework created

by the ETSI ZSM group in 2017, offering both horizontal and vertical end-to-end capabilities [37] and its

the one adopted to the component that will contain the TC developed in this dissertion, the TM.

ZSM serves as a framework designed to facilitate the construction and integration of loosely connected

management functions that provide essential management services. These functions collectively deliver

specific domain and end-to-end capabilities, enabling intervention-free (zero-touch) management of net-

work and infrastructure services. The goal of ZSM is to achieve highly automated networks driven by

high-level policies and rules, allowing networks to have self-configuration, self-monitoring, self-healing, and

self-optimization without requiring constant human intervention [38].

The strategic approach involves developing independent modules, each performing specific functions,

and exposing endpoints for consumption. This modular design allows for the assembly of various modules

to create more specialized services and functionalities for specific use cases [37]. The architecture diagram

of this framework is presented in Fig. 6.

19

Figure 6: ZSM framework reference architecture. Source: [37]

As we can see the ZSM framework blueprint lays out a set of building blocks that work together to create

advanced management services and functions. Essentially, the ZSM framework is made up of scattered

management and data services grouped into management domains and connected through an integration

fabric. This fabric not only facilitates the use of management services but also supports communication

and collaboration with external management systems. Additionally, a cross-domain data service allows

sharing information between different areas. As outlined in ETSI’s documentation [37], the description

and behavior of the primary components within the ZSM architecture are detailed below:

• Management Services: a management service is one of the most important building blocks. They

provide capabilities through service end-points, which define their function regarding the entities

they manage. These capabilities can be shared among multiple consumers, promoting automation

and continuity in interactions between management domains. To deliver their services, service

20

producers may interact with infrastructure resources directly via their interfaces or indirectly by

consuming other services through their end-points.

• Management Functions: management functions are entities that can be labeled as “service pro-

ducers” if they produce (offer) capabilities of management services, and/or “service consumers”

if they consume capabilities of management services.

• Management Domains: management domains are used to partition responsibilities and to create

”separation of concerns” within a given ZSM deployment. Domains provide service capabilities and

can consume services from other domains.

• End-to-End (E2E) Service Management Domain: is a special management domain that provides

E2E management of customer-facing services, composed from the customer-facing or resource-

facing services provided by one or more management domains.

• Integration fabric: allows management functions to communicate within and across management

domains. It handles tasks like registering, discovering, and invoking management services and can

both provide and consume capabilities for service integration.

• Data services: data services enable consistent means of shared management data access and

persistence by authorized consumers across management services within or across management

domains. They also eliminate the need for management functions to handle their own data persis-

tence, thereby allowing to separate data persistence from data processing.

2.5 Related Work

This section serves as a comprehensive exploration of some of the current existing studies, works, and

insights that lay the groundwork for understanding the role of trust in a network scenario. Through a

meticulous examination of related works, the point is to contextualize this research within the broader

scope of current advancements, identify gaps, and gather valuable insights that propel us forward in the

pursuit of innovative solutions.

2.5.1 Work Foundation

The work in [5], describes one of the most recent works related to the implementation of a Blockchain-

based TM and the main foundation for this project. The authors follow the standards from ETSI [39] and

21

adopt the concept of reputation as the right candidate to approximate a value of trust, since reputation

can be measured. So the first step involves describing a set of reputation parameters to compose a value

associated with the risk of trusting each vendor called Trusted Risk (TR). Among different possibilities,

three actions were selected to obtain the corresponding reputation parameters as follows:

1. Provisioning rate: a metric that assesses the percentage of service requests accepted by a provider

out of the total received. For instance, if 9 out of 10 requests are accepted, the provisioning rate is

90%. This metric is crucial for evaluating a provider’s readiness to handle concurrent services and

indicates the effectiveness of its resource management strategy.

2. Non-forced termination rate: a metric that evaluates the percentage of successfully completed ser-

vices in relation to the total accepted and deployed services. For example, if a provider successfully

terminates 8 out of 9 deployed services, the non-forced termination rate is 88.88%. This metric

provides insights into a provider’s reputation for fulfilling services as expected and terminating them

according to client requirements.

3. SLA mitigation rate: a metric that assesses a provider’s effectiveness in responding to SLA vio-

lations. It is calculated by determining the percentage of SLA violations successfully mitigated

compared to the total number of violations generated throughout a service life cycle. For instance,

if a provider mitigates 13 out of 15 SLA violations, the mitigation rate is 86.66%. This metric reflects

the provider’s reputation for promptly addressing and resolving problems related to SLA violations

after deploying the requested service.

The following step involves the process of creating a mathematical expression to compute these pa-

rameters and obtain a TR value. The model uses the three specified parameters and sums them all, each

with a specific weight (w) to define its individual importance over the overall result. The resulting equation

for this specific case is illustrated as follows:

TR =
∑

w ∗Rx

= αRprov_rate + βRterm_rate + γRmit_rate

= α
Sdeployed

Srequested

+ β
Sterminated

Sdeployed

+ γ
SLAmitigated

SLAviolated

(2.5)

In the end of this process we get a single percentage value that goes from 0% to 100% (assuming that

α + β + γ = 1) used to assign a level of trustworthiness to each provider. Finally the last call its from

the blockchain and the SCs that are used to trigger the process to update and manage the trust among

22

multiple stakeholders. Apart from that, the blockchain network will be the element to keep the record

evolution of all reputation values and the TR’s associated with each provider because of its transparency

strength. The SC funcionalities envolve:

• store and distribute service requests to the correct provider based on TSLA requirements (client

demands) and the current reputation and TR values

• to trigger the TR computation after a service is terminated

• to save and share the updated reputation and TR values corresponding to the correct provider

Regarding the internal architecture of the system, it is composed of an abstract entity - TM - which

includes three main components: Trust Service Level Agreement & Policies (TSLAP), TC, and Permissioned

Distributed Ledger Service Manager (PSM). The first is divided into two subcomponents and is mainly

responsible for managing TSLAs and policies. On the other hand, the PSM has the role of controlling

all information flow or communications, acting as a gateway, both to and from the blockchain. Lastly,

our focus, the TC, is the main component when it comes to calculating a trust value since its function

is to manage the process of calculating multiple reputation values to generate a TR associated with each

provider. That said, this component comprises three distinct subcomponents:

• Evaluation: it gathers and evaluates which data are going to be used

• Metrics: it makes use of data models and historical logs from different providers to generate refer-

ence data to pass to the score computation component

• TR Computation: it processes data coming from the previous two components to obtain the updated

and latest reputation values and TR for those providers involved in terminated services

From this point on, the system is ready to receive requests from clients with a set of specific require-

ments aimed at deploying a particular service. This marks the first of the two main points of the system,

with the second being the process of updating reputation values and TR.

2.5.2 Other Works

Apart from this work, several other studies have addressed the challenges of trust management in a

multi-stakeholder scenario.

23

Elmadani et al. [1] focus on a similar goal within the context of 5G networks. By adapting an existing

technique, AppFlow, to monitor provider interactions as presented in [40], they aim to establish a trust-

worthy value for providers using a trust indicator known as Evidence. This indicator branches into two

fields: direct and indirect evidence, which parallel the objective and subjective metrics discussed in this

thesis. Similarly, Niu et al. [41] propose a complex and meticulous trust model using the cloud model

algorithm. This model explores the subjective side of trust, focusing on evaluating network slices rather

than providers and services themselves. However, their work does not leverage decentralized technologies

like blockchain. On the other hand, the work presented in [35] leverages blockchain technology to build a

trust-reputation management solution aimed at minimizing the impact of managing the larger amount of

resources that will be required in next-generation networks. This approach allows nodes to share resources

based on their trustworthiness. However, this method differs from the one proposed in this dissertation,

which focuses on evaluating the trustworthiness of service providers and the services they offer.

Casola et al. [42], despite being an older project, present the design and implementation of a TM

called TruMan, which aims to select the best provider based on a set of requirements. However, as pointed

out by [5], many of these related works are planned to be on top of the architecture, centralizing processes,

what leads to potential bottlenecks and single points of failure[43]. This centralization simplifies the way

an entity might gain undue advantage by controlling or tampering with the stored data, as it is placed within

a single element. Therefore, removing centralization is crucial, and distributed systems are emerging as

a viable solution to these issues.

This chapter describes the main technologies and topcis of interest to the work. The chapter ended with

a summary of the related main works, highlighting one that is used as a starting point, which is ”Blockchain-

based trust management collaborative system for transport multi-stakeholder scenarios”[5]. The next

chapter describes the TM component and the workflows that are one of the main goals to successfully

achieve with the work developed alongside this dissertation.

24

Chapter 3

Trust Manager

In this chapter, the aim is to introduce the abstract component in which the TC is embedded, as well as to

provide an overarching view of the project at hand describing the main workflows in which this component

is involved. This work is further explored and explained in [8].

3.1 Introduction

Typically, in any scenario involving multiple participants or actors, the perception of trust that one entity

has in another is often shared among all. For instance, if a person fails to fulfill a certain task, others

around them will spread that information, which can be detrimental to the individual’s future interactions

as others become more cautious and suspicious. It is therefore clear that the concept of trust can be

easily influenced by simple information, which leads to the need to establish a transparent and shared

way to compute, manage, and distribute trust-related information.

The solution of a TM aims to address this issue, particularly in a scenario where multiple service

providers are competing with each other. As illustrated in the following section, Fig. 7 [44], a TM is an entity

designed to operate across all network domains, such as Radio Access Network (RAN), Cloud, Transport,

Edge, non-terrestrial networks, personal networks, etc., involved in the concept of network slicing. This

distribution occurs because this entity is the key element, as mentioned, capable of calculating a trust

value based on metrics and transparently distributing it throughout the system, maintaining an immutable

record of how reliable providers are in fulfilling their requests. The composition of a TM is presented in the

next section.

25

3.2 Architecture

This architecture is based on the use of the ZSM principles discussed in section 2.4, of which the main

ones adopted are:

• Multilevel Domain: an approach that defines the granularity of automation processes, allowing

different levels of abstraction and decomposition of network and service functions, from E2E to

domain.

• Integration Fabric: a layer that connects all domains, allowing interoperability, data exchange, and

orchestration between them.

• Closed Loop: a mechanism that enables continuous monitoring, analysis, and optimization of net-

work and service performance.

Figure 7: General Framework Mapping. Source:[44]

Fig. 7 [44] demonstrates the mapping of the TM and its different components in the general ZSM

framework. Among these components, the following are highlighted:

• TSLAP: its main function is to create and process the Operator’s TSLA, that establish how services

are configured to meet a certain LoT. This component will integrate a set of deterministic rules to

translate the TSLA requirements into trust policies to be later applied.

26

• TC: it is the core of the service that interacts with all elements and manages the state of processes

and workflows in the TM. Its main function is to execute level of trust calculations within its domain

or at the E2E level. Additionally, at the domain level, it converts/translates policies or capabilities

defined in the SC into specific configurations and metrics to be collected for use in calculations.

• PSM: this component, identified in Fig. 7 [44] as PDL-Service Manager acts as the gateway for

all DLT interactions, including SC management (definition, offers, requests, activation, monitoring,

etc.).

3.3 Workflows

This section provides an overview of the key workflows involving the TM and the TC, focusing on their

primary roles in orchestrating various processes. While some components mentioned may not be rele-

vant to the current case and belong to a parallel security-focused project, the emphasis remains on trust

management.

Initialization Workflow: The initialization process unfolds across four distinct phases. Firstly, provider

resources are uploaded, i.e., the resources they want to offer to the operators, followed by the establish-

ment of SLA and Trust Level Agreement (TLA) requirements. Subsequently, SC creation and offers are

generated based on the defined SLAs. Finally, the offers are distributed among respective domains. No-

tably, the TC does not directly participate in these phases. This workflow is detailed in Appendix A, Fig.

35.

Deployment Workflow: The deployment workflow, also segmented into four phases, involves different

actors at each stage. Initially, providers are selected based on service and requirement criteria. Next, ser-

vice and security deployment activities are executed by components developed in another internal project.

The TC assumes a pivotal role in the subsequent phase, overseeing trust deployment and activation pro-

cesses (further elaborated in subsection 3.3.1). Finally, a closed-loop configuration phase concludes the

deployment, managed in a different internal project. This workflow is detailed in Appendix A, Fig. 36.

Termination Workflow: Similar to the deployment workflow, the termination process comprises four

phases, with each phase managed by different actors. The TC’s involvement is highlighted in subsection

3.3.2, where its role is terminate deployed elements. This workflow is detailed in Appendix A, Fig. 37.

LoT Treatment Workflow: The final workflow, primarily orchestrated by the TC, revolves around handling

LoT. This critical process is elaborated upon in subsection 3.3.3.

The workflows outlined in the subsequent subsections constitute the primary focus of this thesis,

27

elucidating the operational intricacies of trust management within the defined contexts.

3.3.1 Trust Deployment and Activation Request

As previous mentioned the TC plays a crucial role in the third phase of the deployment workflow, as

illustrated in Fig. 8 [8], the Trust Deployment & Activation phase. At this stage of the workflow, there is

a Network Security Instance (NSI) with the basic service and Network Security Funciton (NSF)s already

deployed and configured in terms of security (achieved in the two previous phases), now, the idea is to

follow a similar procedure but looking to achieve the trust requirements defined in the selected E2E TSLA.

To do so, the E2E Network Slicing Security Orchestrator (NSSO) requests the activation of the E2E TSLA

(step 1) to the E2E TC, which forwards this information to the E2E PSM (step 2) so this one may generate

the event for the right domain and provider type (steps 3 – 5). After the right domain PSM takes the event,

it requests the TSLA configuration to the TC (step 6), which in turn needs to get the translation of the E2E

TSLA into policies using the E2E and domain TSLAP components (steps 7 – 11). In this moment and

depending on the policies, the TC may deploy and configure new required NSFs focused on trust or simply

configure those already deployed elements from the previous phase (steps 12 – 14). The same applies

for the Security Probes (SP) illustrated in steps 15 to 18. In both cases, once these steps are done, the

resulting outcomes are forwarded back to the E2E PSM through the domain PSM and DLT (steps 19 - 21),

leaving the TSLA and the selected provider registered as actives. Finally, this information is also sent back

to the E2E NSSO through the E2E TC to update the NSI (steps 22 – 24).

28

Figure 8: Trust Deployment/Activation Workflow. Source:[8]

3.3.2 Trust Deactivation Request

Another responsibility of the TC is to remove the trust-related configurations as illustrated in Fig. 9 [8]

in the Trust Deactivation phase. To do that the E2E NSSO first interacts with the E2E TC (step 1) which

through the E2E PSM reaches the different domain PSMs (steps 2 – 5). Then, each involved PSM requests

to the TC to apply the actions to the affected deployed NSF and SP (steps 6 – 12) and answers back to

the E2E PSM (step 13) through the DLT (steps 14 - 15). So, the E2E TC is finally informed about it (step

16) together with the E2E NSSO (step 17) that updates the NSI data (step 18).

29

Figure 9: Trust Deactivation Workflow. Source:[8]

3.3.3 Level of Trust Treatment

Once a NSI and its NSF and SP are deployed, there is one more action done by the control systems that

neither the operator nor the provider need to be aware of. This is illustrated in Fig. 10 [45] and is the LoT

treatment, which implies the update of the LoT values associated to the selected NSFs and their providers.

This phase begins when a domain TC, using the metrics defined in the selected SLA computes the Service

LoT (step 1), and sends it to the PSM (step 2) so this one registers the updated value in the DLT and

generates an event for the E2E PSM (steps 3, 4). When the event is received, the E2E PSM requests to

the E2E TC to compute the updated value of the provider delivering the affected service (steps 5 - 7), and

then the new value is updated by the E2E PSM in the DLT (step 8), so when a new providers selection is

required for a another NSI deployment, the latest LoT values can be used.

30

Figure 10: Level of Trust Treatment Workflow. Source:[45]

31

Chapter 4

Internal Architecture

In this chapter, the focus shifts towards the constitution of the internal components of the TC and its overall

architecture. It is noteworthy to mention that there was an intention to align with the work presented in [5],

where the TC is embedded within a more intricate and abstract component known as the TM. However,

before delving into these details, it is imperative to clarify and comprehend the two distinct use cases in

which the TC may find itself, depending on the context. These arise due to the architecture inherent to the

construction of the TM called ZSM:

• E2E Domain Context: it has a role more focused on the overall management of the various TCs

from each domain. It also possesses functions as input/output in relation to systems external to

the TM.

• Local Domain Context: its role is focused on the very essence of a TC, that is, it is dedicated to the

functionality of reliability calculation and integrations with the different components that make up

the TM.

For simplification reasons, from this point forward, the two contexts are referred as E2E and Domain,

respectively. As illustrated in Fig. 11, we will have an E2E TM for each E2E domain and a TM for each local

domain. Within a TM, a TC will always be found. As previous mentioned, the functionality and objective

will change depending on the context in which is used.

32

Figure 11: Comprehensive system diagram displaying all integrated components from the Trust Controller

point of view.

Both the E2E TC and the TC package are structured into distinct modules, each designed with a

specialized function. There are modules allocated for managing inbound and outbound communication

(integration modules), others dedicated to executing precise operational functionalities (functional mod-

ules), and a central hub (E2E/Domain TC) that orchestrates the overarching system control and oversees

the database management.

4.1 End-To-End Trust Controller

The E2E TC, illustrated in Fig. 12, is organized into several modules, each designed with specific function-

alities to maximize cohesion and minimize complexity. This modular approach enhances scalability and

maintenance.

The primary objective of the E2E TC is to manage E2E operations within the TC scope. It serves

as a proxy between the E2E PSM and the Security Orchestrator (SO), while also calculating an E2E LoT

using Domain LoTs data provided by the PSM entity. The system leverages message brokers for internal

communication and provides a Representational State Transfer (REST) Application Programming Interface

(API) for external sources.

33

Figure 12: E2E Trust Controller internal architecture

To provide an overview, the E2E TC (subsection 4.1.1) consists of several modules dedicated to effective

management. These include an Error Handler, a Service LoT Manager, and an Orchestrator that handles

the relaunching of error requests. Additionally, the Trust Provider Score (TPS) (subsection 4.1.2) module

is responsible for score computation, generating an E2E LoT from the known Domain LoTs. Finally, there

is an E2E PSM Integration module (subsection 4.1.3) designed for integration with external sources such

as the PSM and the SO.

4.1.1 E2E Trust Controller

The E2E TC (Fig. 13) is designed to manage the entire package scope, comprising three distinct modules,

each with a specific task.

34

Figure 13: E2E Trust Controller module details

The Service LoT Manager module handles Domain LoT entries by consuming messages from the

TC.SLOT queue. Its primary function is to create or update these values in the local database. Sub-

sequently, it forwards the updated information to the Orchestrator via the TC.TPS queue, initiating the

processing of a new E2E LoT.

The Orchestrator implements a batch service to streamline the processing of large datasets and elimi-

nate duplicate executions. This approach is crucial for managing the substantial volume of LoT information

from various domains, optimizing resource utilization, and enhancing the overall efficiency of trust assess-

ments within the network. Its main function is to queue IDs related to Domain LoT changes and send them

to the TPS module. Additionally, it incorporates a retry mechanism, discarding or retaining retry requests

based on a timestamp comparison with the last registered execution in the database.

Respect to the Error Handler module, this module manages all failed requests or flows. Depending

on the nature of the error, requests can either be retried or stored in the database for later analysis.

35

Responsibilities

• It is responsible for storing and updating all Domain LoT records received.

• It is responsible for stocking providers IDs and forward them to the TPS module.

• It is responsible for managing retry requests.

• It is responsible for handling errors at the E2E level and addressing domain issues that have been

escalated from individual domains.

4.1.2 Trust Provider Score

This module is responsible for calculating the E2E LoT, also known as the Provider LoT, for a service

provider.

Figure 14: E2E Trust Provider Score module details

As illustrated in Fig. 14, the TPS module’s primary function is to compute and store a new E2E

LoT. It receives provider IDs through the TPS queue, indicating that the LoT for the associated provider

has changed and needs to be updated or created. The process begins by fetching all the Domain LoTs

associated with the given provider and applying a specific formula to generate the new E2E LoT. This

computed value is then stored in the database.

36

Responsibilities

• It is responsible for generating an E2E LoT through Domain LoT data associated.

• It is responsible for registering all status of the execution steps in the database.

4.1.3 E2E PSM Integration

This module serves as an intermediary between the E2E PSM and the SO entities, facilitating their com-

munication. Its internal structure primarily consists of a REST API and a batch service.

Figure 15: E2E PSM Integration module details

As illustrated in Fig. 15, the REST API exposes an endpoint for activating or deactivating trust capa-

bilities at the E2E level. The SO uses this endpoint to send requests to the E2E PSM, which responds

with a list of service providers that have their SC activated or deactivated. The module then relays this

information back to the SO entity.

Additionally, the module acts as a receiver for Domain LoT (Service LoT) data, accepting input from

the E2E PSM and dispatching it to the TC.SLOT queue for processing.

The module also includes a batch service designed to collect all E2E LoTs with a pending status

(those not yet stored in the blockchain) and send them to the E2E PSM entity. Upon receiving a successful

response, the batch service updates the status of the E2E LoTs: active ones become inactive, and pending

ones become active. This batch service is triggered and scheduled to run twice a day.

Responsibilities

• It is responsible for receiving a request for activating/deactivating trust capabilities from the SO

entity and return a provider list.

37

• It is responsible for receiving Domain LoT from the E2E PSM component and forward it to the

Service LoT Manager.

• It is responsible for sending E2E LoT to the E2E PSM through a batch service.

4.2 Domain Trust Controller

The Domain TC, illustrated in Fig. 16, is structured similarly to the E2E TC. It consists of several modules,

each designed with specific functionalities to enhance cohesion and reduce complexity, thereby ensuring

scalability and ease of maintenance. The primary objective of the Domain TC is to activate trust calculations

for a service provider and generate a Domain LoT using continuously monitored trust metrics.

Figure 16: Domain Trust Controller internal architecture

To provide an overview, the functionality of the Domain TC has been highly modularized. It includes;

integration modules: these modules encompass the business logic required for integrating with external

artifacts, such as the PSM, TSLAP, and Domain Controller (DC); metric data collection and trust compu-

tation modules: these modules are dedicated to the collection of trust metrics and the computation of

trust scores; orchestrator: to manage the entire trust flow, including task management and scheduling,

and; error handler: to oversee error logic, including retries and error management, ensuring robust error

handling and recovery.

38

By modularizing the system in this manner, the Domain TC is able to efficiently manage and process

trust metrics, maintain high reliability through its error handling and retry mechanisms, and facilitate

seamless integration with external systems.

4.2.1 Trust Controller

The Domain TC is a module designed to manage the entire scope of trust-related processes.

Figure 17: Domain Trust Controller module details

As illustrated in Fig. 17, the TC module consists of two submodules: the Orchestrator and the Error

Handler.

The Orchestrator functions similarly to the Orchestrator at the E2E level (detailed in subsection 4.1.1).

It includes a batch service connected to the TC.TSS queue, which is responsible for storing service IDs and

dispatching them to the Trust Service Score (TSS) queue. Additionally, it utilizes the TC.RETRIES queue to

manage and process retry requests. A new feature in this Domain TC is the TC.TRACKING queue, which

receives notifications of metric changes and signals the Trust Metric Processor (TMP) module via the Trust

Objective Metrics (TOM) and Trust Subjective Metrics (TSM) queues, depending on whether the metric is

objective or subjective.

The Error Handler’s primary role is to manage all failed requests or workflows. Depending on the type

of error, requests can either be retried or logged in the database as issues for later analysis. Moreover, it

handles failed requests originating from the PSM entity using the PSM queue.

39

Responsibilities

• It is responsible for stocking service IDs and forward them to the TSS module.

• It is responsible for managing retry requests.

• It is responsible for signal the TSS module on metric changes.

• It is responsible for handling errors at the Domain level.

4.2.2 Trust Metric Processor

The TMP is a crucial module responsible for receiving raw metric data, checking for potential penalizations

related to applicable policies and/or SLAs, and generating a standardized value for subsequent use in

calculating a composite value. This standardized value is then averaged with historical values to compute

the final composite value.

It is important to distinguish between objective and subjective metrics, as detailed in subsection 2.2.3.

To manage these metrics, the system utilizes a TOM queue, a TSM queue for retries, and a REST API

(Subjective API) for new records. This structure is illustrated in Fig. 18.

Figure 18: Trust Metric Processor module details

When a request is received through any entry point, such as the TOM queue or the Subjective API, the

TMP initiates a new execution process. The goal of this execution is to compute a new composite value

based on the received metric value, considering penalizations associated with the policies and/or SLAs of

the metric, as well as historical values. This process is detailed in subsection 4.6.2.

40

If the computation is successful, the information is forwarded to the TC.TSS queue, which triggers

the Domain LoT calculation by the Orchestrator. If an error occurs, the information is redirected to the

TC.ERROR queue for further evaluation.

Responsibilities

• It is responsible for log all pertinent activities in the database, capturing essential execution details

such as metrics, timestamps, steps of the process, current status, and the metric’s type (objective

or subjective).

• It is responsible for accurately retrieve and analyze policies and SLAs related to the metric group,

and verify the existence of applicable penalizations.

• It is responsible for compute a standardized and composite value for each metric execution it

receives.

• It is responsible for sending a signal to the TSS module to initiate a new Domain LoT calculation.

Subjective consideration

A subjective metric approach was considered and taken into account during the implementation phase.

However, it is far from being fully operational as it is not within the scope of the current project. Therefore,

it remains a pending topic for future work.

4.2.3 Trust Service Score

This module, depicted in Fig. 19, serves as the engine that synthesizes and evaluates composite metric

values to produce a Domain LoT.

41

Figure 19: Trust Provider Score module details

Upon receiving an entry in the TSS queue, the module initiates a new execution process. This process

involves retrieving a complete list of composite metric values associated with the service ID specified in

the request. Following this, the module computes a new Domain LoT using a specific formula detailed in

subsection 4.6.2.

If the computation is successful, the information is stored in the database. If an error occurs, the

information is redirected to the TC.ERROR queue for further evaluation.

Responsibilities

• It is responsible for log all pertinent activities in the database, capturing essential execution details

such as timestamps, steps of the process, current status, and Domain LoTs.

• It is responsible for collecting all composite metric values of a certain service for the subsequent

calculation of his Domain LoT.

4.2.4 Integration Modules: PSM Integration

Effective communication with various stakeholders within the TM framework, including the PSM, is crucial.

To facilitate this, integration modules have been created. The first module to be presented is the PSM

Integration.

42

Figure 20: PSM Integration module details

As illustrated in Fig. 20, this module provides a REST API that exposes an endpoint for activating or

deactivating the trust score for a specific service at the Domain level. In the activation scenario, the module

receives a new request, which is then redirected to the SLA.CONFIG queue to trigger the configuration of

new metrics. In the deactivation scenario, the request is redirected to the SLA.ENFORCE queue, triggering

the removal of configurations and cessation of metric tracking.

Additionally, similar to the module presented in ssubection 4.1.3, this integration module includes a

batch service. However, instead of collecting E2E LoTs, it collects Domain LoTs, or Service LoTs, which

are then sent to the PSM entity to be stored in the blockchain. This batch service operates on the same

way, being triggered and scheduled twice a day.

Responsibilities

• It is responsible for receiving requests for activating/deactivating trust scores from the PSM entity.

• It is responsible for sending Domain LoTs to the PSM through a batch service.

4.2.5 Integration Modules: SLA Integration

Effective communication with various stakeholders within the TM framework, including the TSLAP, is

crucial. To facilitate this, integration modules have been created. The second module to be presented is

the SLA Integration.

43

Figure 21: SLA Integration module details

This module, shown in Fig. 21, is responsible for retrieving local policies using a TSLA ID provided

in the trust activation request. To achieve this, it uses the SLA.CONFIG queue to receive the request and

interact with the TSLAP API to send the necessary information for retrieving the local policies.

The module is expected to store minimal information about SLAs and policies to apply penalizations,

such as thresholds or target values. Additionally, it should be capable of retrieving the list of metrics

and associating them with these policies and SLAs. The system for tracking these metrics should be

established here in advance. This information is then stored in the database. Finally, the list of metrics is

sent to the SLA.ENFORCE queue for configuration.

Responsibilities

• It is responsible for getting metric service related infromation from the TSLAP API given a TSLA ID.

• It is responsible for creating SLAs, Metrics and Associations in the database.

4.2.6 Integration Modules: Domain Integration

Effective communication with various stakeholders within the TM framework, including the DC, is crucial.

To facilitate this, integration modules have been created. The third module to be presented is the Domain

Integration.

44

Figure 22: Domain Integration module details

This module, illustrated in Fig. 22, is responsible for registering all types of metric generation through

subscriptions with probes and configuring/deploying NSFs. Once these tasks are completed, trust scoring

is considered activated for a provider within the domain context. The artifact comprises two separate

services: the trust metric generation service and the tracking manager service.

The trust metric generation service operates through the SLA.ENFORCE queue, which receives NSF

and Security Probes (SP) configurations. It then enforces these configurations by sending NSF configura-

tions to the DC and probes configurations to the Security component. Subsequently, the module stores

all data associated with metric subscriptions in the corresponding table of the Domain Trust database. If

everything is in order, it activates trust scoring and sends a confirmation message to the PSM queue.

Once activated, the tracking manager service begins receiving metric events from the SP component

and redirects them to the TC.TRACKING queue, initiating the process of LoT calculation.

Responsibilities

• It is responsible for deploying and configure NSF.

• It is responsible for deploying and configure SP.

• It is responsible for create subscriptions to get metric events.

• It is responsible for notify the Orchestrator of new trust metric events.

45

4.3 Data Model

The Data Model section provides a detailed overview of the data structures and relationships that support

the TC framework. This section is divided into three parts, each focusing on different aspects of the

system’s data architecture.

First, the E2E Level subsection presents the Entity-Relationship (ER) diagram specific to the E2E trust

management, highlighting the primary entities and their interactions designed to effectively monitor and

evaluate service providers.

Next, the Domain Level subsection delves into the data model at the domain level, detailing the entities

and their relationships that facilitate the computation and management of trust metrics within individual

domains.

Finally, the Common subsection identifies the tables and data structures shared between the E2E and

Domain contexts, ensuring consistency and coherence across different levels of the trust management

system.

4.3.1 E2E Level

This subsection presents the ER diagram shown in Fig. 23 for the E2E level, along with its detailed data

types. The diagram provides a comprehensive visual representation, showing the different relationships

and data structures that define the component’s role within the broader system architecture.

46

Figure 23: Entity-Relationship diagram of the E2E database

In the E2E context, the data model is designed with simplicity in mind, aiming to monitor providers

effectively. The primary entities include Providers, representing the service providers themselves, and

ProviderLoT, which captures the corresponding E2E LoT. Provider status is tracked through the Provider-

Status entity, denoting whether a provider is active or inactive. To compute the E2E LoT, each provider

must have a set of associated Domain LoTs, facilitated by the ServiceLoT entity. ProviderLoTStatus is

employed to monitor the status of all E2E LoTs, indicating whether they are active, pending, or inactive.

The scoring process for LoT computation is managed by ScoringExecution, which logs each calculation

step with the help of the ScoringEnum enumeration. The status of each execution is tracked by the Exe-

cutionStatus entity, delineating whether the process is complete, ongoing, canceled, or failed. Lastly, the

ProviderLoTAssociation table establishes the relationship between a provider, their ProviderLoTs, and their

respective statuses.

47

4.3.2 Domain Level

This subsection focuses on presenting the ER diagram shown in Fig. 24 for the Domain level, along with its

detailed data types. The diagram provides a comprehensive visual representation, showing the different

relationships and data structures that define the component’s role within the broader system architecture.

Figure 24: Domain Database Entity-Relationship Diagram (simplified)

In this data model, key elements include a table for storing metrics (Metrics entity) and another for

capturing their values and related information (ObjectiveMetricValues or SubjectiveMetricValues). Addition-

ally, separate junction tables are established to associate Policies and SLAs with the metrics. A dedicated

table for computing the LoT, named ComputingMetricValues, is implemented to store the final value of a

metric. This table includes a timestamp for confirmation purposes, enabling the verification of any devia-

tions between the last value considered for calculating the new composite value and the current value. As

in the E2E context, we have execution tables, ScoringExecutions, ObjectiveExecutions and SubjectivesExe-

cutions, whose purpose is to log execution steps and manage retry control. The remaining tables related to

providers and services serve the same purpose as in the E2E level, but within the Domain context. Lastly

the table Subscriptions is mainly responsible for store metric related information, such as, where to get

access to the respective probes, i.e., the metric events associated to the service. A full detailed version

can be seen in Appendix A, section A.5.

In Fig. 25, the enumerations utilized for the Domain context are presented. Among these, Scoring

48

and Metric Process serve as enumerations to log execution steps, while the other two belong to metric

configurations: one denotes its type, and the other describes how it is measured.

Figure 25: Domain Database Enumerations

4.3.3 Common

As presented in Fig. 26, certain tables are shared between the E2E and Domain contexts. These mainly,

relate to errors and system parameters, as they contain data that remains consistent across both levels.

Figure 26: E2E and Domain Common Data Model

4.4 Data Objects

Regarding the design of data objects, it played a crucial role in the project’s development phase. Firstly,

understanding the content type received at each API endpoint was essential to ensure proper data handling.

Secondly, it was important to align with the expected data objects from external sources. These two are

named external data objects. Meanwhile, internal data objects were built to seamlessly traverse RabbitMQ

49

queues. Typically, each queue is associated with a specific data object, except in scenarios such as, for

example, if we are processing the request of a provider score, TPS queue, it can either be a new request,

so the data object will contain the provider id, or a retried request (a request that failed and its being re

done), and the data object will contain an execution id instead, so that the previous process computation

can be restored if possible. All data objects are of dictionary type, ensuring JavaScript Object Notation

(JSON) serialization for efficient production and consumption from queues. The only exception are the

Error, ExecutionError, and ErrorRequest classes designed to handle system errors. However these classes

are equipped with methods for proper serialization.

The error classes, utilized by a dedicated error handler, differentiate between various types of errors

that occur within the system. Both the ExecutionError and ErrorRequest classes are related to errors that

happen in specific modules of the system. The ExecutionError class, as the name suggests, deals with

execution errors typically encountered in modules like TPS or TMP, where computational requests are

initiated. These errors allow for a predefined number of retries before being marked as failed, as specified

in the system parameters table. On the other hand, the ErrorRequest class addresses errors originating

from external sources, particularly in integration modules. Unlike the former, these errors lack a robust

retry mechanism. Lastly, the Error class encompasses all other errors occurring within the core system,

including TC or E2E TC errors.

For a detailed breakdown of all the defined data objects, refer to Appendix A, section A.4.

4.5 External Integrations

This section aims to summarize all the interactions of the TC with external sources in both contexts, E2E

and Domain.

50

Figure 27: E2E and Domain Context External Integrations

Beginning with the E2E level, presented on the left side of Fig. 27, as we can see the E2E TC can

either consume or provide information from and to external sources. This functionality is facilitated through

the implementation of an API featuring two distinct endpoints: one for processing activation (POST) or

deactivation (DELETE) requests from the SO entity and another for receiving service LoTs from the E2E

PSM. On the consumption side, the E2E TC interacts with two endpoints: the first, provided by the SO

entity, handles redirection of activation (POST) or deactivation (DELETE) requests, while the second sends

newly calculated provider LoTs to the E2E PSM for blockchain registration.

In contrast, at the Domain level, illustrated on the right side of Fig. 27, the scope of interactions is

more extensive. Here, an additional API was developed with a singular endpoint dedicated to receiving

activation or deactivation requests for trust capabilities specific to a service from the PSM entity. This

operation occurs asynchronously. Furthermore, the TMP component features an API for managing client

reports and feedback that are handled by subjective metrics. This API offers endpoints for listing available

service metrics (GET) and receiving client feedback (POST). Although a text-based feedback endpoint for

analysis by ML models was considered during the design phase, all this subjective consideration was

considered beyond the project’s scope. On the consumption front, the TC does it when the cron service

is activated to send newly computed service LoTs to the PSM. Additionally, it consumes data from the

TSLAP to get all the service related information like NSF and Probes configurations and metric details, it

also consumes from the SP entity to request the initialization of metric events, and finally from the DC to

deploy and configure the NSF.

51

For a detailed breakdown of the exposed and consumed endpoints, refer to Appendix A, section A.1

and A.2.

4.6 Level of Trust Model: Analysis and Computation

LoT its a percentage value that measures the level of trust of a provider or service, depending on the

context it appears, E2E or Domain, respectively.

LoT model has been designed to provide a comprehensive and accurate assessment of the trust

associated with a provider or service. There are two levels of LoT, E2E and Domain, with the latter carrying

more complexity, integrating both quantitative and qualitative factors. This model consists of two main

elements: one focused on the processing of objective metrics and another dedicated to the calculation of

the LoT.

Table 2 presents the trust provider rank classification adopted in this project. Dividing this classification

into five categories simplifies decision-making by offering distinct trust states. Using categories instead of

continuous percentage values provides a clear and intuitive framework, allowing stakeholders tomake quick

and informed decisions. This approach balances granularity with accessibility, making trust assessments

straightforward and actionable.

Table 2: Trust rank classification

Trust Rank Completely Untrusted Untrusted Weak Trusted Strong Trusted Completely Trusted

LoT (%) 0-20 20-40 40-60 60-80 80-100

4.6.1 E2E Level

In the E2E model, the process is efficiently managed through the integration of three key modules:

1. Receiving the Domain LoT: this function is a part of the E2E PSM Integration module. It uses a

RESTful API to receive Domain LoTs, ensuring effective communication and data exchange. The

request for these LoTs originates from the blockchain and is sent by E2E PSM component.

2. Recording and updating existing LoT: the E2E TC module is tasked with recording and updating E2E

LoTs in the local database. This process provides a reliable and current snapshot of each domain’s

value associated with a provider.

52

3. Calculation of Provider LoT: E2E TPS module is dedicated to generating the E2E LoT, this module

plays a crucial role in maintaining the integrity and accuracy of the service process. When a cal-

culation thread or process initiates, the module fetches all the latest available Domain LoTs for a

specific service. It then calculates the average of the available values at that moment, in relation to

the number of domains for which data is available.

E2E LoT =

∑n
x=1 DLoTx

n
(4.1)

Where:

• DLoT is the Domain Level of Trust

• n is the total number of records

4.6.2 Domain Level

At the Domain level the calculation process of the LoT of a service incorporates the integration of several

modules within the TC and can be summarized by the following four steps:

1. Metrics Tracking: the system continuously monitor service metrics through the tracking manager

module. This includes real-time monitoring of metric values via subscriptions established within

the trust metric generation module upon communication with the DC component. An event should

be triggered whenever there is a change in a metric’s value.

2. Processing and Standardization: rawmetric values undergo processing to yield standardized values.

This entails the application of associated policies and SLAs, including the appropriate penalties. The

formula employed for this process is as follows:

SVx = 100− Px (4.2)

Where:

• SVx is the standardized value of the metric x

• Px is the penalty value associated with metric x

53

As previous mentioned, each metric has an associated threshold, derived from SLAs, that represent

acceptable performance limits. The penalty value is calculated based on the distance from the

requested limit, i.e. Objective Value (OV). This proportional approach ensures that penalties are

fair and reflective of the actual performance. For instance, a slight deviation from the threshold

incurs a minimal penalty, while a significant deviation results in a substantial penalty. This choice

is grounded in real-world applicability as in practical scenarios, stakeholders are concerned with how

far a metric deviates from acceptable limits, as this directly impacts service quality and reliability.

Therefore, this approach aligns well with practical needs and expectations. The following formulas

are used to calculate the penalty in different cases:

(a) When the OV has a maximum limit:

Px = max(0,min(100, 100 ∗ RVx −OV

OV
)) (4.3)

(b) When the OV has a minimum limit:

Px = max(0,min(100, 100 ∗ OV −RVx

OV
)) (4.4)

(c) When the OV has both a minimum and maximum limit:

Px = max(0,min(100, 100 ∗ max(RVx −OVmax, OVmin −RVx)

OVmax −OVmin

)) (4.5)

(d) When the OV doesn’t exist:

Px = 100− (100 ∗RVx) (4.6)

Where:

• RVx is the raw value of the metric x

• OV is the objective value of a metric, representing its required limits (minimum and/or

maximum)

3. Calculation of the Composite Value: The next step is computing a composite value, derived as

the weighted average between the standardized value and its historical counterpart. The formula

employed for this calculation is expressed as:

CV =

∑n
x=1 SVx

n
(4.7)

Where:

54

• SVx is the standardized value of the metric x

• n is the total number of records

4. Calculation of the Domain LoT: once the composite value has been calculated, the process to

recalculate the Service LoT can began. Predefined weights are assigned to the metrics based on

the SLA of the respective service. The sum of the weights must be 1. With this understanding, the

LoT is determined by calculating the average of the composite values of the existing metrics, each

multiplied by its respective weight:

DomainLoT =
m∑

x=1

CVx ∗ weightx (4.8)

Where:

• CVx is the composite value of the metric x

• m is the total number of metrics

• weightx is the contribution of the metric x to the LoT calculation

At this point a Domain LoT data object representing the comprehensive trust level of the service within

a domain, is created to be stored in the local database and subsequently transmitted to the blockchain for

secure record-keeping and storage, facilitated by the PSM component. This four-step computation pipeline

is done within three of the modules composing the Domain TC. Each of the modules accomplishes the

following of the tasks. First, the Domain Integration module (subsection 4.2.6) is in charge of the first task

(i.e., metrics tracking). Then, the TMP (subsection 4.2.2) takes care to apply the second and third tasks

(i.e., processing and standardization, calculation of composite value). Finally, the TSS (subsection 4.2.3)

module is the responsible for the last task (i.e., calculation and propagation of the Domain LoT).

55

Chapter 5

Implementation

This chapter, in a initial phrase, delves into the methodology adopted during the project’s development

and the technological choices made to ensure efficiency, scalability, and maintainability. From project

management to code implementation, each decision was carefully considered to align with the project’s

objectives and requirements. Its worth mention that some of the choices here presented were taken as a

team and not by me individually.

Later on, is explored the practical realization of the conceptual framework outlined in the preceding

chapters. It provides a comprehensive overview of how the theoretical concepts were translated into a

functional system, detailing the organization of code, development methodologies employed, and critical

decisions made during the implementation process. The chapter is structured to highlight the progression

through various development phases, each representing a significant milestone in the project’s evolution.

Additionally, critical decisions that shaped the project’s architecture and functionality are described, offer-

ing insights into the rationale behind key design choices.

5.1 Work Methodology

Adhering to the principles of Scrum and Agile methodologies, the project followed a sprint-based approach

with weekly iterations. This facilitated the agile principle of ”delivering working software frequently” by

breaking down tasks into manageable units and scheduling them into sprints. Task management and

collaboration were streamlined through the GitLab platform, serving as both project management tool

and code repository. The distribution of tasks spanned various areas including requirements, technology

investigation, system design, implementation, testing, and support.

56

5.2 Technological Choices

During the development of the project, careful consideration was given to selecting the appropriate tools

and technologies to ensure efficiency, scalability, and maintainability. Here are presented the main reasons

behind these options.

As already mentioned, one of the first options taking in consideration was the use of GitLab for project

and team management, as well as code repository hosting. This tool provides a comprehensive set of

features for collaboration, issue tracking, continuous integration/delivery, and version control, streamlining

the development workflow and enhancing the team productivity.

As for the primary programming language, Python was chosen. It offers a large set of libraries and

frameworks, making it an ideal choice for building complex systems. Furthermore its simplicity, readability,

and extensive community support where also topics with great weight on the choice. PyCharm was utilized

as Integrated Development Environment (IDE) for its robust features, intelligent code completion, and

seamless integration with GitLab.

For a efficient and decoupled communication between the system components, the message bro-

ker chosen was RabbitMQ, since it offers and facilitates asynchronous communication through queues.

Apache Kafka was also considered but it ended discarded since its not suitable for real-time processing.

Regarding database management, the choice of PostgreSQL is based on its advanced capabilities and

robustness. Other than that, PostgreSQL offers Atomicity, Consistency, Isolation, and Durability (ACID)

compliance, meaning that database transactions are processed in a reliable and correct way. To access

and observe the database data, the management tool chosen was DBeaver due to its versatile and user-

friendly interface.

Between Flask and FastAPI, the later was chosen for building the REST APIs, primarily, due to its sup-

port and greater capacity to handle asynchronous programming. Its fast performance and documentation

of API endpoints are also important features.

Docker is used as a tool for containerization, enabling the application and its dependencies to be

packed into lightweight and portable containers. Docker ensures consistency across development, testing,

and production environments, streamlining deployment and scaling processes.

Lastly, one important choice was, as Python’s native unit testing framework, the use of Unittest. This

tool allowed to conduct rigorous testing of individual portions of code, ensuring the correct operation of

the different software components.

57

5.3 Code Structure

The architecture of the TC component is structured in a way that tries to meet the principles of modularity,

reusability, and efficiency, as well as streamline both development and maintenance workflows. Following a

microservices-based approach, the application is divided in small and autonomous services interconnected

via RabbitMQ queues. This approach facilitates scalability allowing the system to grow independently.

The code is organized with a focus on delineating responsibilities and fostering cohesion among related

functionalities. Each microservice is structured with a clear set of modules, where some have multiple

functionalities and others are dedicated to singular tasks. The starting point of each component is always

a Main.py file, that manages the initialization of threads for each module, that, in turn instantiate specific

services where the core logic of the component resides. To ensure clear delineation of responsibilities

within each component, normally the code is organized into separate files: one for the service logic,

another for handling execution functions such as database calls, and a final one dedicated to implementing

database access queries.

As mentioned, the entire codebase is hosted within a single GitLab repository. At the top level, folders

are organized in both the E2E and Domain contexts, alongside the database, and an utility library project

shared among all components. Within these folders, each microservice is documented in a README file,

explaining its purpose, functionality, and deployment steps.

5.4 Development Phases

The development of this project can be concised in 5 different phases. This section presents and describes

the most important tasks performed in each one of them.

5.4.1 Phase 1: Database Implementation

The first phase of development consisted on a initial stage for establishing foundations. The first step was

the development of both E2E and Domain databases as well as the messaging service. It was decided

to deploy the RabbitMQ server alongside the database, since they’re both needed for almost all the com-

ponents in the system. So, the first container to be deployed will host the database and the messaging

service at the same time on a common network specified in the docker file. In order to promote code

reusability and encourage modularity it was developed a common-utility project that’s used as an internal

library, minimizing redundancies. This library includes, for example, database and RabbitMQ related calls,

58

as well as a common error handler implemented from scratch and constants that are used and shared

among all components in the system. The next step of this phase consisted in the creation of a functional

template including the minimal technologies required for all the artifacts, such as, a set up for an API,

messaging queues, etc, ensuring that every new component begins with a consistent, well-defined struc-

ture equipped with endpoints for basic operations and a set of unit tests. Lastly, it is defined at this point,

an unit and integration test plan for all use cases, in both, E2E and Domain contexts.

5.4.2 Phase 2: E2E Implementation

The second phase focused on implementing and testing all components within the E2E context, followed

by refactoring and documentation. The starting point was the E2E TC component (section 13), that incor-

porates three distinct modules with dedicated queues. The simpler one, Service LoT Manager, in terms of

implementation was pretty straightforward since it’s only task is to execute database calls. Slightly increas-

ing the complexity, the Error Handler module, manages system errors by analyzing their type (where did it

came from, how many times happen, etc) and deciding whether to log them in the database or send them

to the next module, Orchestrator, to be retried. The Orchestrator is the core operational module, managing

new and retried requests within a specific timeframe or message count before dispatching them for pro-

cessing. This procedure is done on the next component built, the TPS (subsection 4.1.2), that didn’t bring

any implementations challenges. Its main quest is to compute a new E2E LoT based on Domain LoTs,

following the formula presented on subsection 4.6.1. The most challenging aspect was developing the E2E

PSM Integration (subsection 4.1.3), which includes an API service built with FastAPI to communicate with

the external E2E PSM source. This service receives and dispatches new requests to the Orchestrator and

acts as an intermediary between E2E PSM and SO entities. Additionally, a cron service was implemented

to update E2E LoTs in the blockchain periodically. This service is schedule to activate two times a day with

a small difference, every failed execution on the first time can be retried on the second time before being

canceled and stored in the database for later analysis. The periodicity chosen aims to minimize excessive

calls to the blockchain, since the LoT will be constantly changing for each metric event received. To ensure

the integrity and reliability of the developed components, unit tests were defined for each one of them,

and integrated into the Docker deployment process. Deployment is aborted if any test fails. Each artifact

was also documented thoroughly in README files. Finally, the previously established integration test plan

was conducted to ensure proper connectivity between containers hosting artifacts and those hosting the

database and RabbitMQ server, verifying the correctness of interactions and data flow.

59

5.4.3 Phase 3: Partial Domain Implementation

Similarly to the second one, the third phase involved implementing and testing nearly all components,

but this time at the Domain level, also followed by a process of refactoring and documentation. The

development of the Domain TC (section 4.2) was based on the E2E TC, with some modifications. For

instance, a Service LoT Manager-like module was not required, and the Orchestrator had to manage the

metrics tracking system in addition to handling new and retried requests, i.e., every time a metric changed

was discovered, the right component needed to be notified. This component, TMP (subsection 4.2.2), was

implemented to analyze these metric changes and compute its value after applying the right penalizations

based on defined requirements, as explained in subsection 4.6.2, to further send a start request for a new

Domain LoT computation. After going through the Orchestrator this request arrives to the TSS (subsection

4.2.3) that works in a similar way to the TPS, computing a new Domain LoT following the predefined

formula presented in subsection 4.6.2. The final artifact developed in this phase was the PSM Integration,

which, similar to the E2E context, includes an API and a cron service. However, the API in the Domain

context receives requests to activate or deactivate the metrics tracking system for a specific service and

provider asynchronously, so that the artifact can continue is execution after redirecting them to the right

component. The workflow from this point onward is similar to that of the second phase: unit tests are

conducted before deployment, followed by documentation of each artifact and execution of the previously

established integration tests.

5.4.4 Phase 4: Domain and SLA Integration Implementation

The fourth phase of the implementation focused on the development of the final two integration modules:

Domain and SLA. This phase presented several challenges due to its dependency on external sources,

which were not accessible at the time of the project’s execution. Consequently, this limitation affected and

constrained the ability to obtain results. To address this, it was decided to develop and simulate these

external artifacts (TSLAP, DC, and SP).

Starting with the SLA Integration module and the TSLA Mockup, the implementation was straightfor-

ward. The main objective of the SLA Integration module is to store metric-related information in the local

database. Its key functionality involves communicating with the TSLA Mockup to retrieve this data. The

Mockup was built with a simple API capable of receiving requests and responding with predefined metric

data stored in a local file.

The Domain Integration module required some architectural changes compared to the initial design,

60

as it needed to mock the two external sources. These changes are illustrated in Fig. 28, primarily involving

the addition of a queue to handle metric event tracking. This modification altered the initial logic, as the

queue would not have been necessary if these events were sourced externally from the framework.

Figure 28: Refactorized Domain Integration Module

The implementation itself was relatively straightforward, with the exception of devising a reliable retry

mechanism. This module requires access to two different endpoints for activating/deactivating configu-

rations, and in the event of an error, the retry process must accurately determine which operations were

completed, so they don’t repeat itself. This was managed using two flags (one for each configuration) to

track the state of these operations during retries. Additionally, the tracking manager service is designed

to stop reading metric events whenever a new metric configuration is requested to avoid conflicts.

Regarding the mockups, the DC was the simplest to implement due to the limited information about its

purpose. It consists of a basic API with one endpoint to deploy or undeploy (post or delete, respectively) NSF

configurations, responding with either a positive or negative message depending on the case. The Probes

mockup, however, required a more complex and robust logic to generate metric events upon receiving a

new configuration. This was achieved using threads to ensure fast, simultaneous operations and a realistic

simulation of the component’s purpose. To facilitate this simulation, a local file database was created to

store metric specifications.

As with the previous phases, a series of unit tests and integration tests were conducted at the end of

this process to ensure that each component could communicate with each other correctly.

61

5.4.5 Phase 5: Workflow Testing

In this final phase, the focus was on testing and simulating the entire workflow from start to finish. This

comprehensive testing approach differed from the previous integration tests, which only verified the com-

munication between limited components. Now, all components were deployed for the respective contexts,

either Domain or E2E.

The first step involved creating a detailed test plan for various use cases, divided into two main cat-

egories: Domain and E2E. Each test was documented with a name, description, set of preconditions,

expected results, and an evidence section. The evidence section provided a step-by-step explanation of

each test, supported by images that captured artifact logs or database changes to verify the activity and

data modifications. A more detailed view of these tests is presented in subsection 6.2.

This approach ensures a comprehensive validation of the system’s functionality in both Domain and

E2E contexts, covering all critical workflows and operations.

5.5 Critical Decisions

This section aims to highlight some of the decisions made during the implementation of the TC and its

components, as well as some key aspects.

One of the initial decisions, more architectural than code related, was the creation of integration mod-

ules. These modules serve as intermediaries, hosting APIs to facilitate the communication with external

sources. This approach ensures that all data entering and leaving the system is routed through these

modules, effectively isolating the other components. The modules are the ones mentioned on subsections

4.1.3, 4.2.4, 4.2.5 and 4.2.6.

Another decision was to design the service operating within the Orchestrator in both the E2E and

Domain TCs as a batch service. This choice was made since it is expected that this artifact will handle a

large volume of data within short timeframes, potentially leading to duplicated requests. The objective was

to minimize unnecessary processing and optimize resource utilization. To achieve this, the service was

implemented with a semaphore approach, either accumulating a certain number of requests or waiting

for a specified period of time. Once either condition is met, all accumulated requests are dispatched for

processing.

Another critical aspect of the system involves a scheduled service implemented in both the E2E and

Domain contexts. This service, detailed on subsections 4.1.3 and 4.2.4, is referred to as a batch service

due to its purpose. It is encapsulated within a Python file, along with scheduling information specified

62

in a Dockerfile. The service is programmed to run twice daily, with a one-hour interval, so it can exhibit

a different error-handling behavior. During the first execution, any encountered errors are disregarded,

allowing the originating processes to be retried during the subsequent run. However, during the second

execution, errors are managed and logged for potential human intervention. Additionally, the affected

processes are updated with a corresponding failed status.

All components within the TC, at both the E2E and Domain levels, are equipped with an auto-retry fea-

ture. This functionality allows each service or process to be automatically retried under certain conditions.

The primary objective of this retry system is to provide a second opportunity for errors of the timeout type,

which typically arise from unexpected events. Consequently, each process can be retried at least once,

specifically when encountering a timeout error. In addition to this general retry mechanism, there exists

a dedicated retrying system for execution requests. These requests are associated with the computation

modules, wherein an execution object (ScoringExecution, ObjectiveExecution, or SubjectiveExecution) is

generated to assist the calculation process. When errors occur within specific modules (TPS, TMP, and

TSS), they undergo a retry process first through the general auto-retry feature and then through this spe-

cialized system. To do that are utilized specialized queues known as retry queues. The error handler

modules play a crucial role in this process by capturing and redirecting errors, while the orchestrators

analyze errors, verify their status, and process them as normal requests for retrying. Additionally, the

number of retries allowed before logging and storing the error in the database can be adjusted via system

parameters. To optimize efficiency, the strategy adopted involves leveraging the execution object to store

essential information, allowing the calculation process to resume after an error occurs. Consequently, the

information exchanged in the retry queue is kept minimal, typically consisting of an identifier that directs

back to the stored object.

In addition to the decisions made during implementation, a notable choice was the development

of a custom error handler. While typical error handlers aim to manage errors encountered during system

operation, this implementation goes beyond the standard. It features a dedicated queue to efficiently route

and manage errors throughout the system, ensuring they reach the appropriate components, notably the

Orchestrator, for resolution. Furthermore, the error handler incorporates three distinct error classes, as

discussed in section 4.4. These classes facilitate the implementation of the retry mechanism mentioned

earlier, enhancing error management and database organization by categorizing errors based on their

origin and nature.

63

Chapter 6

Tests and Results

This chapter describes the rigorous testing processes employed to validate the functionality of the devel-

oped components, presenting a comprehensive overview of the testing methodologies, test cases, and the

corresponding results obtained during the evaluation phase. The aim of this testing phase was to ensure

that each component operates as intended.

6.1 Unit and Integration Tests

The testing phase is initiated with a focus on unit testing, aiming to examine each individual artifact

independently before integrating them into the system. These tests are done to guarantee the functionality

of each service within the component, ensuring that the expected functions are invoked correctly, inputs

and outputs are handled as anticipated, and that errors or exceptions are identified and correctly treated.

Unit tests are conducted for every code modification, serving as a fundamental step prior to deploying

the artifact with docker. Python’s built-in unittest framework, allowed to automate and streamline the unit

testing process, enhancing efficiency and reliability.

Regarding the the integration test cases, these ones were executed following the completion of both

the E2E and Domain contexts. These tests played a crucial role in validating the seamless communication

between microservices and ensuring connectivity with the database and the messaging server. To simulate

interactions with external sources like the PSM or the SO component, the Postman’s capability to generate

mocks was utilized. At this point, each artifact was being deployed using Docker tools, including Docker

Compose and Dockerfiles, to facilitate the execution of these tests.

After a successful execution, all unit and integration tests were meticulously documented in the test

plan, accompanied by detailed step-by-step explanations. It were executed a total of 86 unit tests and 57

integration tests. A preview of both plans, unit and integration can be seen in Appendix B.1.1 and B.1.2,

respectively.

64

6.2 Workflow Tests

Unlike integration tests, which aim to test connectivity between two artifacts sharing the message queue

system and the database, workflow tests aim to ensure the correct functioning of all components involved

in different workflows. These workflows include both E2E and Domain level processes. For each one of

them, is defined a set of preconditions, such as the microservices to deploy and the external sources that

need to be mocked. Additionally, the expected outcomes are defined, such as obtained responses and

data changes/creation in the database. The tested workflows include, for the E2E level, activating and

disabling provider trust calculation, provider LoT generation, and the process of sending the calculated

provider LoTs. And for the Domain level, activating and disabling service trust calculation, service LoT

generation, and the process of sending the calculated service LoTs. For some of these use cases, error

scenarios were also tested to cover all possible outputs.

As mentioned, at the E2E level, four main tests were established based on the workflows presented

in section 3.3. Each test also included an error version to test edge cases by inducing errors at specific

points in the execution.

• Enable Provider Trust Calculation: This test corresponds to steps 1-2 of Fig. 8. It involves receiving

an activation request for certain providers and registering those with an activated SC in the database.

• Disable Provider Trust Calculation: This test corresponds to steps 1-2 of Fig. 9. It involves receiving

a deactivation request for certain providers and registering it in the database.

• Generate Provider LoT: This test corresponds to steps 5-6 of Fig. 8. It involves receiving a new

Service LoT, which triggers the calculation of a new Provider LoT.

• Register Provider LoT: This test corresponds to steps 7-8 of Fig. 8. It involves gathering all the new

Provider LoTs and sending them to the E2E PSM.

For the Domain level, four main tests were established, aligning with the previously presented E2E

tests. Error cases are omitted here for simplicity. These tests also follow the workflows presented in

section 3.3.

• Enable Service Trust Calculation: This test corresponds to steps 6-19 of Fig. 8. It involves receiving

an activation request for a service, retrieving all necessary configurations, and initiating metric

tracking for that service.

65

• Disable Service Trust Calculation: This test corresponds to steps 5-14 of Fig. 9. It involves receiving

a deactivation request for a service and suspending all related activities for that service.

• Generate Service LoT: This test corresponds to step 1 of Fig. 10. It involves receiving a metric

event for a service, initiating the calculation process of a new Service LoT, and registering it in the

database.

• Register Service LoT: This test corresponds to steps 2-3 of Fig. 10. It involves gathering all new

Service LoTs and sending them to the PSM.

It were executed a total of 14 workflow tests and a preview of the test plan can be seen in Appendix

B.1.3.

6.3 Practical Example

In this final section, the functionality of the system is demonstrated by presenting some results and inter-

actions. To keep the focus on the main goal and minimize the amount of information the reader needs

to process, this example omits several steps of the process. Details such as subscription specifics for

the metrics, execution logs for the metrics processing and the LoT calculation, and some interactions with

external sources have been streamlined. Three use cases from the domain context were chosen as exam-

ples: Enable Service Trust Calculation, Generate Service LoT, and Register Service LoT. These use cases

follow the most common workflow required for all new registrations, starting with activating the process

for a specific service, followed by generating a new LoT triggered by metric events, and finally, registering

this new value into the blockchain.

The process begins when the PSM Integration API receives an activation request. This can be simu-

lated using Postman, Fig. 29.

66

Figure 29: Simulation of an activation request using Postman.

After obtaining the information from the request, the first step is to create this new service in the

database with an active status, Fig. 30.

Figure 30: New service created in the database with active status.

The next step involves retrieving the SLA, which establishes the client trust requirements for this

service, such as which metrics to monitor and the corresponding thresholds, etc. This information is

stored in the database after being retrieved from the external SLA component and is managed by the SLA

Integration entity. In this example, we monitor the latency and throughput metrics, with the SLA specifying

an OV for latency between 0 and 10 ms and for throughput, at least 1 Mbps. Fig. 31 demonstrates how

this information is organized in the database.

Figure 31: SLA requirements for latency and throughput metrics.

67

In the Domain Integration component, the deployment of the NSF (DC entity) and the probes configu-

ration (SP entity) is done, allowing the service metrics to start being received and monitored. At this point,

the first use case is completed.

The next stage begins when the Domain Integration receives metric events. In this case, the tracking

manager inside the Domain Integration component receives two events for each metric. As we can see in

Fig. 32, the latency metric did not suffer any penalization as the received values (8 and 9) were within the

requested limits ([0, 10]). However, the throughput values (484 and 170) were far below the requested

limit ([1000,+∞[), resulting in a composite trust value of 0.

Figure 32: Received metric events and their evaluation.

These new metric values trigger the calculation of a new Service LoT, which is computed as 100 ∗

0.5 + 0 ∗ 0.5 = 50, given that both metrics have equal weight. The new LoT is then registered in the

database, Fig. 33, concluding the second use case.

Figure 33: New Service LoT calculated and registered in the database.

The final step and use case focus on delivering this new value to the blockchain through the PSM

Integration component. The LoT value is stored in the database with a pending status, a flag that enables

this transaction to occur. The automatic cron service gathers all pending LoTs and sends them to the PSM

entity. After the process, the status is changed to active as showed in Fig. 34.

Figure 34: New Service LoT with status updated to active.

In summary, this practical example demonstrates part of the functionality of the system through three

key use cases: Enable Service Trust Calculation, Generate Service LoT, and Register Service LoT. The

68

workflow begins with the activation of the service, where the system retrieves and stores necessary SLA

configurations. It then proceeds to monitor and evaluate service metrics, handling both compliant and

non-compliant metric events. Finally, the calculated Service LoT is securely registered in the blockchain.

69

Chapter 7

Conclusions and Future Work

This last chapter presents the key aspects and outcomes of the work done, and identifies potential areas

for future exploration and improvement.

7.1 Conclusions

This dissertation explores the design and implementation of a TC architecture within a pre-established TM

framework for 6G networks. As the next generation networks walks towards more open and disaggregated

architectures, trust management becomes a crucial point for maintaining security and service quality

across multiple stakeholders. The proposed TC aims to mitigate this challenge by making use of Blockchain

technology to provide a transparent and reliable trust management system.

The implementation involved several key phases, including the development of functional and integra-

tion modules and the simulation of external components to validate the system’s functionality. Despite

challenges, particularly in obtaining real-time data from external sources, a successfully simulation of these

components ensured the system’s functionality.

A significant aspect of this work was the development and execution of comprehensive test cases.

These tests covered various use case scenarios, including enabling and disabling trust calculations, gen-

erating and registering LoTs for both services and providers, and handling errors to ensure the system

robustness.

In conclusion, this thesis presents a foundational framework for trust management in 6G networks,

addressing key challenges and leaving a solid base for future enhancements. The proposed TC archi-

tecture and its integration with Blockchain technology offer a promising solution for managing trust in a

complex, multi-stakeholder environment. As 6G networks continue to develop, the importance of robust

trust management systems will only grow, and this work provides a crucial step towards achieving that

goal.

70

7.2 Future Work

Although this work presents a complex architecture and operational implementation for the TC within the 6G

TM framework, there are several areas for further research and development to enhance its effectiveness

and scope. Three of them should be pointed out:

• Improvement of the Trust Level Model: The current trust level model is relatively simple and linear,

designed primarily to ensure the system’s functionality and operational capability. Future work

should focus on developing a more sophisticated algorithm to improve the calculation of the LoT.

By incorporating more complex factors into the trust model, we could achieve more accurate and

reliable trust evaluations. This enhancement will contribute to a more robust trust management

system capable of meeting the demands of advanced 6G networks.

• Analysis of Potential Actors for the DC Entity: a critical next step should be to study and analyze

potential actors for the DC entity. This involves identifying key players and understanding their

roles, capabilities, and interactions within the 6G network ecosystem. By getting deeper insights

into these actors, it can be possible to design a more efficient and robust Domain Integration

module, facilitating seamless communication with the DC and optimizing the NSF deployment and

configuration. Some examples include works like [46] using Open Source Mano or [47] using

TeraflowSDN.

• Incorporation of Subjective Metric Analysis: the incorporation of a fully functional component ded-

icated to handling subjective metrics. Currently, the trust management system primarily focuses

on objective metrics. However, subjective metrics, such as client feedback and qualitative assess-

ments, could play a vital role in providing a comprehensive view of the service provider performance.

To address this, the development of a component that utilizes advanced text-based AI technologies

to analyze and interpret client feedback can be studied. By leveraging natural language processing

and ML techniques, this component could effectively translate subjective reports into actionable

trust metrics.

In summary, these three areas of future work aim to improve the robustness and comprehensiveness

of the TC. By studying more sophisticated algorithms for the LoT model and potential actors for the DC

and incorporating AI-driven subjective metric analysis, we can further advance the trust management

framework, ensuring it meets the evolving demands of 6G networks.

71

Bibliography

[1] S. Elmadani, S. Hariri, and S. Shao. Blockchain based methodology for zero trust modeling and quan-

tification for 5g networks. In 2022 IEEE/ACS 19th International Conference on Computer Systems

and Applications (AICCSA), pages 1–9, Los Alamitos, CA, USA, dec 2022. IEEE Computer Society.

doi: 10.1109/AICCSA56895.2022.10017914. URL https://doi.ieeecomputersociety.

org/10.1109/AICCSA56895.2022.10017914.

[2] Reza Soltani, Marzia Zaman, Rohit Joshi, and Srinivas Sampalli. Distributed ledger technologies and

their applications: A review. Applied Sciences, 12(15), 2022. ISSN 2076-3417. doi: 10.3390/

app12157898. URL https://www.mdpi.com/2076-3417/12/15/7898.

[3] Massimo Di Pierro. What is the blockchain? Computing in Science & Engineering, 19(5):92–95,

2017. doi: 10.1109/MCSE.2017.3421554.

[4] Karthik Kumar Vaigandla, RadhaKrishna Karne, Mounika Siluveru, and Madhavi Kesoju. Review

on blockchain technology : Architecture, characteristics, benefits, algorithms, challenges and ap-

plications. Mesopotamian Journal of CyberSecurity, 2023, 2023. doi: 10.58496/MJCS/2023/

012. URL https://mesopotamian.press/journals/index.php/CyberSecurity/

article/view/68.

[5] Pol Alemany, Raul Munoz, Josep Martrat, Antonio Pastor, Rodrigo Diaz, Diego Lopez, Ramon Casel-

las, Ricardo Martinez, and Ricard Vilalta. Blockchain-based trust management collaborative system

for transport multi-stakeholder scenarios. Journal of Optical Communications and Networking, 15

(8):488–496, 2023. doi: 10.1364/JOCN.486503.

[6] Pol Alemany, Ricard Vilalta, Raul Muñoz, Ramon Casellas, and Ricardo Maríinez. Peer-to-peer

blockchain-based nfv service platform for end-to-end network slice orchestration across multiple nfvi

domains. In 2020 IEEE 3rd 5G World Forum (5GWF), pages 151–156, 2020.

[7] D. Moreira, J. García, J. Cunha, and J. García. 6g networks: Trust controller architecture proposal.

In 2024 15th International Conference on Network of the Future (NoF), pages 1–5, 2024.

72

https://doi.ieeecomputersociety.org/10.1109/AICCSA56895.2022.10017914
https://doi.ieeecomputersociety.org/10.1109/AICCSA56895.2022.10017914
https://www.mdpi.com/2076-3417/12/15/7898
https://mesopotamian.press/journals/index.php/CyberSecurity/article/view/68
https://mesopotamian.press/journals/index.php/CyberSecurity/article/view/68

[8] P. Alemany, R. Muñoz, R. Vilalta, Ll. Gifre, R. Martínez, R. Casellas, M. Castro, P. Ferreira, D. Moreira,

J. García, J. Cunha, I. Núñez, G. Gómez, S. Castro, A. Pastor, and D. López. Security and trust in

open and disaggregated 6g networks. In 2024 24th International Conference on Transparent Optical

Networks (ICTON), pages 1–4, 2024. doi: 10.1109/ICTON62926.2024.10647935.

[9] Faisal Tariq, Muhammad R. A. Khandaker, Kai-Kit Wong, Muhammad A. Imran, Mehdi Bennis, and

Merouane Debbah. A speculative study on 6g. IEEE Wireless Communications, 27(4):118–125,

2020. doi: 10.1109/MWC.001.1900488.

[10] Tongyi Huang, Wu Yang, Jun Wu, Jin Ma, Xiaofei Zhang, and Daoyin Zhang. A survey on green 6g

network: Architecture and technologies. IEEE Access, 7:175758–175768, 2019. doi: 10.1109/

ACCESS.2019.2957648.

[11] TechTarget. 6g networks - what is 6g & when is it available?, 2023. URL https://www.

techtarget.com/searchnetworking/definition/6G.

[12] Nokia. 6g explained | nokia, n/d. URL https://www.nokia.com/about-us/newsroom/

articles/6g-explained/.

[13] NGMN Alliance. 6g position statement: An operator view. NGMN Publications, 2023.

[14] Ioannis Tomkos, Dimitrios Klonidis, Evangelos Pikasis, and Sergios Theodoridis. Toward the 6g

network era: Opportunities and challenges. IT Professional, 22(1):34–38, 2020. doi: 10.1109/

MITP.2019.2963491.

[15] Samar Elmeadawy and Raed M. Shubair. 6g wireless communications: Future technologies and

research challenges. In 2019 International Conference on Electrical and Computing Technologies

and Applications (ICECTA), pages 1–5, 2019. doi: 10.1109/ICECTA48151.2019.8959607.

[16] Pawan Meena, Monti Babulal Pal, Praphula Kumar Jain, and Rajendra Pamula. 6g communication

networks: Introduction, vision, challenges, and future directions. Wirel. Pers. Commun., 125(2):

1097–1123, jul 2022. ISSN 0929-6212. doi: 10.1007/s11277-022-09590-5. URL https:

//doi.org/10.1007/s11277-022-09590-5.

[17] Jagadeesha R. Bhat and Salman A. Alqahtani. 6g ecosystem: Current status and future perspective.

IEEE Access, 9:43134–43167, 2021. doi: 10.1109/ACCESS.2021.3054833.

73

https://www.techtarget.com/searchnetworking/definition/6G
https://www.techtarget.com/searchnetworking/definition/6G
https://www.nokia.com/about-us/newsroom/articles/6g-explained/
https://www.nokia.com/about-us/newsroom/articles/6g-explained/
https://doi.org/10.1007/s11277-022-09590-5
https://doi.org/10.1007/s11277-022-09590-5

[18] Yiying Wang, Xin Kang, Tieyan Li, Haiguang Wang, Cheng-Kang Chu, and Zhongding Lei. Six-trust

for 6g: Toward a secure and trustworthy future network. IEEE Access, 11:107657–107668, 2023.

doi: 10.1109/ACCESS.2023.3321114.

[19] Chafika Benzaïd, Tarik Taleb, and Muhammad Zubair Farooqi. Trust in 5g and beyond networks.

IEEE Network, 35(3):212–222, 2021. doi: 10.1109/MNET.011.2000508.

[20] Wenjuan Li and Lingdi Ping. Trust model to enhance security and interoperability of cloud environ-

ment. In Martin Gilje Jaatun, Gansen Zhao, and Chunming Rong, editors, Cloud Computing, pages

69–79, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-10665-1.

[21] Volker Ziegler, Peter Schneider, Harish Viswanathan, Michael Montag, Satish Kanugovi, and Ali

Rezaki. Security and trust in the 6g era. IEEE Access, 9:142314–142327, 2021. doi: 10.1109/

ACCESS.2021.3120143.

[22] Zainab M. Aljazzaf, Mark Perry, and Miriam A. M. Capretz. Trust metrics for services and service

providers. In International Conference on Internet and Web Applications and Services, 2011. URL

https://api.semanticscholar.org/CorpusID:17895285.

[23] Upul Jayasinghe, Gyu Myoung Lee, and Aine MacDermott. Trust-based data controller for personal

informationmanagement. In 2018 International Conference on Innovations in Information Technology

(IIT), pages 123–128, 2018. doi: 10.1109/INNOVATIONS.2018.8605979.

[24] European Union. General data protection regulation (gdpr). Official Journal of the European Union,

L119:pp. 1–88, 2016.

[25] Bahar Farahani, Farshad Firouzi, and Markus Luecking. The convergence of iot and distributed

ledger technologies (dlt): Opportunities, challenges, and solutions. Journal of Network and

Computer Applications, 177:102936, 2021. ISSN 1084-8045. doi: https://doi.org/10.1016/

j.jnca.2020.102936. URL https://www.sciencedirect.com/science/article/pii/

S1084804520303945.

[26] South Carolina Emerging Tech Association. Distributed ledger technologies, 2020. URL https:

//sceta.io/distributed-ledger-technologies/.

[27] Zehui Xiong, Yang Zhang, Nguyen Cong Luong, Dusit Niyato, Ping Wang, and Nadra Guizani. The best

of both worlds: A general architecture for data management in blockchain-enabled internet-of-things.

IEEE Network, 34(1):166–173, 2020. doi: 10.1109/MNET.001.1900095.

74

https://api.semanticscholar.org/CorpusID:17895285
https://www.sciencedirect.com/science/article/pii/S1084804520303945
https://www.sciencedirect.com/science/article/pii/S1084804520303945
https://sceta.io/distributed-ledger-technologies/
https://sceta.io/distributed-ledger-technologies/

[28] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy. Towards blockchain-

based auditable storage and sharing of iot data. In Proceedings of the 2017 on Cloud Computing

Security Workshop, CCSW ’17, page 45–50, New York, NY, USA, 2017. Association for Computing

Machinery. ISBN 9781450352048. doi: 10.1145/3140649.3140656. URL https://doi.org/

10.1145/3140649.3140656.

[29] Niclas Kannengießer, Sebastian Lins, Tobias Dehling, and Ali Sunyaev. Trade-offs between distributed

ledger technology characteristics. ACM Comput. Surv., 53(2), May 2020. ISSN 0360-0300. doi:

10.1145/3379463. URL https://doi.org/10.1145/3379463.

[30] Mohammad Jabed Morshed Chowdhury, MD. Sadek Ferdous, Kamanashis Biswas, Niaz Chowdhury,

A. S. M. Kayes, Mamoun Alazab, and Paul Watters. A comparative analysis of distributed ledger tech-

nology platforms. IEEE Access, 7:167930–167943, 2019. doi: 10.1109/ACCESS.2019.2953729.

[31] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business review,

2008.

[32] Haojun Liu, Xinbo Luo, Hongrui Liu, and Xubo Xia. Merkle tree: A fundamental component of

blockchains. In 2021 International Conference on Electronic Information Engineering and Computer

Science (EIECS), pages 556–561, 2021. doi: 10.1109/EIECS53707.2021.9588047.

[33] Medium Teemu Kanstrén. Merkle trees: Concepts and use cases, 2021. URL https://medium.

com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318.

[34] Tri Nguyen, Ngoc Tran, Lauri Loven, Juha Partala, M-Tahar Kechadi, and Susanna Pirttikangas.

Privacy-aware blockchain innovation for 6g: Challenges and opportunities. In 2020 2nd 6G Wireless

Summit (6G SUMMIT), pages 1–5, 2020. doi: 10.1109/6GSUMMIT49458.2020.9083832.

[35] Guntur Dharma Putra, Volkan Dedeoglu, Salil S Kanhere, and Raja Jurdak. Toward blockchain-based

trust and reputation management for trustworthy 6g networks. IEEE Network, 36(4):112–119, 2022.

doi: 10.1109/MNET.011.2100746.

[36] European Telecommunications Standards Institute. Permissioned distributed ledger

(pdl);specification of requirements for smart contracts’ architecture and security, 2021. URL

https://www.etsi.org/deliver/etsi_gs/PDL/001_099/011/01.01.01_60/gs_

PDL011v010101p.pdf.

75

https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1145/3379463
https://medium.com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318
https://medium.com/coinmonks/merkle-trees-concepts-and-use-cases-5da873702318
https://www.etsi.org/deliver/etsi_gs/PDL/001_099/011/01.01.01_60/gs_PDL011v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/PDL/001_099/011/01.01.01_60/gs_PDL011v010101p.pdf

[37] European Telecommunications Standards Institute. Zero-touch network and service management

(zsm); reference architecture, 2019. URL https://www.etsi.org/deliver/etsi_gs/ZSM/

001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf.

[38] European Telecommunications Standards Institute. Zero touch network & service

management (zsm), 2024. URL https://www.etsi.org/technologies/

zero-touch-network-service-management.

[39] European Telecommunications Standards Institute. Permissioned distributed ledger (pdl); repu-

tation management, 2023. URL https://www.etsi.org/deliver/etsi_gs/PDL/001_

099/015/01.01.01_60/gs_PDL015v010101p.pdf.

[40] Bithika Khargharia, Haoting Luo, Youssif Al-Nashif, and Salim Hariri. Appflow: Autonomic

performance-per-watt management of large-scale data centers. In 2010 IEEE/ACM Int’l Confer-

ence on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social

Computing, pages 103–111, 2010. doi: 10.1109/GreenCom-CPSCom.2010.103.

[41] Ben Niu, Wei You, Hongbo Tang, and Xiaolei Wang. 5g network slice security trust degree calculation

model. In 2017 3rd IEEE International Conference on Computer and Communications (ICCC), pages

1150–1157, 2017. doi: 10.1109/CompComm.2017.8322724.

[42] V. Casola, L. Coppolino, A. Mazzeo, N. Mazzocca, and M. Rak. Design and implementation of truman,

a trust manager component for distributed systems. In Second International Workshop on Security,

Privacy and Trust in Pervasive and Ubiquitous Computing (SecPerU’06), pages 7 pp.–40, 2006. doi:

10.1109/SECPERU.2006.7.

[43] Sandro Rodriguez Garzon, Hakan Yildiz, and Axel Küpper. Towards decentralized identity manage-

ment in multi-stakeholder 6g networks. In 2022 1st International Conference on 6G Networking

(6GNet), pages 1–8, 2022. doi: 10.1109/6GNet54646.2022.9830163.

[44] 6G-OPENSEC project. Deliverable E4 – Trust Manager architecture and interfaces. Technical report,

6G-OPENSEC-TRUST, September 2023.

[45] 6G-OPENSEC project. Deliverable E6 – Trust Manager Systems Preliminary Implementation. Tech-

nical report, 6G-OPENSEC-TRUST, April 2024.

[46] Panagiotis Karamichailidis, Kostas Choumas, and Thanasis Korakis. Enabling multi-domain orches-

tration using open source mano, openstack and opendaylight. In 2019 IEEE International Symposium

76

https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf
https://www.etsi.org/technologies/zero-touch-network-service-management
https://www.etsi.org/technologies/zero-touch-network-service-management
https://www.etsi.org/deliver/etsi_gs/PDL/001_099/015/01.01.01_60/gs_PDL015v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/PDL/001_099/015/01.01.01_60/gs_PDL015v010101p.pdf

on Local and Metropolitan Area Networks (LANMAN), pages 1–6, 2019. doi: 10.1109/LANMAN.

2019.8847036.

[47] R. Vilalta, P. Alemany, Ll. Gifre, R. Martínez, R. Casellas, and R. Muñoz. End-to-end inter-domain

transport network slice management using dlt-enabled cloud-based sdn controllers. In 2023 Optical

Fiber Communications Conference and Exhibition (OFC), pages 1–3, 2023. doi: 10.1364/OFC.

2023.Tu3D.3.

77

Appendix A
Support work

Auxiliary results which are not main-stream.

A.1 External Integrations E2E Level

A.1.1 Exposed interfaces

Table 3: E2E Trust Controller exposed interface (1/3)

Operation name: /trustCtrl/providerLot
Description POST. Activates trust capabilities smart contract
Input Parameters Type Description
Object Json List of providers
Output Parameters Type Description
Object Json List of potential providers with sc activated

Table 4: E2E Trust Controller exposed interface (2/3)

Operation name: /trustCtrl/providerLot
Description DELETE. Deactivates trust capabilities smart contract
Input Parameters Type Description
Object Json List of providers and deactivation cause
Output Parameters Type Description
– – –

Table 5: E2E Trust Controller exposed interface (3/3)

Operation name: /trustCtrl/providerLot/<provider_service_id>
Description POST. Receive a Service LoT
Input Parameters Type Description
Object Json Service LoT data
Output Parameters Type Description
– – –

78

A.1.2 Consumed Interfaces

Table 6: E2E PSM consumed interface (1/3)

Operation name: /opensecTrust/v1/psm/slice/serviceProvider
Description POST. Retrieve list of providers to activate.
Input Parameters Type Description
Object Json List of providers
Output Parameters Type Description
Object Json List of potential providers with sc activated

Table 7: E2E PSM consumed interface (2/3)

Operation name: /opensecTrust/v1/psm/slice/serviceProvider
Description DELETE. Retrieve list of providers to deactivate.
Input Parameters Type Description
Object Json List of providers and deactivation cause
Output Parameters Type Description
Object Json List of providers to deactivate

Table 8: E2E PSM consumed interface (3/3)

Operation name: /opensecTrust/v1/psm/slice/e2elot
Description POST. Send provider lot
Input Parameters Type Description
Object Json Provider ID and LoT
Output Parameters Type Description
– – –

A.2 External Integrations Domain Level

A.2.1 Exposed Interfaces

Table 9: Domain TMP exposed interface (1/2)

Operation name: /trustCtrl/serviceLot/<provider_service_id>
Description GET. Provides a list of available subjective metrics
Input Parameters Type Description
Object Json ID of the Provider Service
Output Parameters Type Description
Object Json List of available subjective metrics associated to provider service given

79

Table 10: Domain TMP exposed interface (2/2)

Operation name: /trustCtrl/serviceLot/feedback

Description
POST. Receive direct feedback from users, including
ratings and comments, associated with a particular provider

Input Parameters Type Description
Object Json Subjective metric evaluation info
Output Parameters Type Description
– – –

Table 11: Domain PSM exposed interface (1/2)

Operation name: /trustCtrl/serviceLot
Description POST. Initiate a mechanism for enabling trust activation score
Input Parameters Type Description
Object Json Domain trust activation request
Output Parameters Type Description
– – –

Table 12: Domain PSM exposed interface (2/2)

Operation name: /trustCtrl/serviceLot
Description DELETE. Initiate a mechanism for disable trust activation score
Input Parameters Type Description
Object Json Domain trust deactivation request
Output Parameters Type Description
– – –

A.2.2 Consumed Interfaces

Table 13: Domain PSM consumed interface

Operation name: /trustCtrl/serviceLot
Description POST. Send Service LoT
Input Parameters Type Description
Object Json Provider and Service ID and Service LoT
Output Parameters Type Description
– – –

Table 14: Domain TSLA consumed interface

Operation name: /inventory/dtsla

Description
POST. Retrieve service metrics related information
for a TSLA of a service.

Input Parameters Type Description
Object Json TSLA ID
Output Parameters Type Description
Object Json List of metrics and configurations.

80

Table 15: Domain Controller consumed interface (1/2)

Operation name: /nsf_activate_config
Description POST. Activate NSF configuration.
Input Parameters Type Description
Object Json NSF ID
Output Parameters Type Description
– – –

Table 16: Domain Controller consumed interface (2/2)

Operation name: /nsf_deactivate_config
Description DELETE. Deactivate NSF configuration.
Input Parameters Type Description
Object Json NSF ID
Output Parameters Type Description
– – –

81

A.3 Workflows

Figure 35: Data Objects On boarding and Offers Registration Workflow

82

Figure 36: Security and Trust Deployment Workflow

83

Figure 37: Security and Trust Termination Workflow

A.4 Data Objects

A.4.1 External Data Objects

Table 17: Data Object: e2e_trust_selected_providers_do (activation use case)

Field Type Must Description

nsd_id UUID Yes ID of the NSD
selected_providers Providers Yes List of providers

84

Table 18: Data Object: e2e_trust_selected_providers_do (deactivation use case)

Field Type Must Description

nsd_id UUID Yes ID of the NSD
selected_providers Providers Yes List of providers
deactivation_cause DeactivationCauseEnum Yes Cause of the deactivation

Table 19: Data Object: Type Providers

Field Type Must Description

id UUID Yes ID of the Provider
ssla_id UUID Yes ID of the SSLA
tsla_id UUID Yes ID of the TSLA
nsr_id UUID Yes ID of the NSR

Table 20: Data Object: e2e_providers_sc_activated_do (list of)

Field Type Must Description

provider_id UUID Yes ID of the Provider
provider_services List of UUID Yes List of provider services IDs activaded

Table 21: Data Object: e2e_provider_lot_do

Field Type Must Description

provider_id UUID Yes ID of the Provider
lot INT Yes Level of Trust

Table 22: Data Object: e2e_service_lot_do

Field Type Must Description

provider_id UUID Yes ID of the Provider
provider_service_id UUID Yes ID of the provider Service
lot INT Yes Level of Trust
timestamp DATETIME Yes Record creation time

Table 23: Data Object: domain_trust_activation_do

Field Type Must Description

provider_service_id UUID Yes ID of the provider Service
provider_id UUID Yes ID of the Provider
e2e_xsla_id UUID Yes ID of the E2E TSLA
service_lot INT Yes Level of Trust

85

Table 24: Data Object: domain_trust_deactivation_do

Field Type Must Description

provider_service_id UUID Yes ID of the provider Service
provider_id UUID Yes ID of the Provider
cause DeactivationCauseEnum Yes Cause of the deactivation

Table 25: Data Object: dtsla_do

Field Type Must Description

provider_service_id UUID Yes ID of the provider Service
metrics List of dicts Yes List of metrics with the respective information

Table 26: Data Object: domain_service_lot_do

Field Type Must Description

provider_id UUID Yes ID of the Provider
provider_service_id UUID Yes ID of the provider Service
lot INT Yes Level of Trust

Table 27: Data Object: domain_available_metrics_do

Field Type Must Description

provider_service_id UUID Yes ID of the provider Service
available_metrics AvailableMetrics Yes List of available subjective metrics

Table 28: Data Object: Type AvailableMetrics

Field Type Must Description

id BIGINT Yes ID of the metric
name STRING Yes Name of the metric
description STRING Yes Description of the metric

A.4.2 Internal Data Objects

Table 29: Data Object: e2e_tc_slot_do

Field Type Must Description

provider_service_id UUID Yes ID of the provider Service
provider_id UUID Yes ID of the Provider
timestamp DATETIME Yes Record creation time
lot INT Yes Level od Trust

86

Table 30: Data Object: e2e_tc_tps_do and e2e_tps_do (first request)

Field Type Must Description

provider_id UUID Yes ID of the Provider

Table 31: Data Object: e2e_tc_retries_do

Field Type Must Description

provider_id UUID Yes ID of the Provider
execution_id BIGINT Yes ID of the Execution
timestamp DATETIME Yes Record creation time

Table 32: Data Object: domain_psm_do

Field Type Must Description

request_id UUID Yes ID of the async PSM request
response JSON Yes Response message
http_status INT Yes Http status code

Table 33: Data Object: domain_sla_config_do

Field Type Must Description

request_id UUID Yes ID of the async PSM request
provider_service_id UUID Yes ID of the provider Service
tsla_id UUID Yes ID of the E2E TSLA

Table 34: Data Object: domain_sla_enforce_do

Field Type Must Description

request_id UUID Yes ID of the async PSM request
provider_service_id UUID Yes ID of the provider service
metrics List of dicts Yes List of metrics with the respective information

Table 35: Data Object: domain_tc_tracking_do (objective metric)

Field Type Must Description

metric_id BIGINT Yes ID of the metric
metric_type MetricTypeEnum Yes Type of the metric
raw_value FLOAT Yes Value of the metric
timestamp DATETIME Yes Record creation time
measure MeasureEnum Yes Measure of the metric

87

Table 36: Data Object: domain_tc_tracking_do (subjective metric)

Field Type Must Description

metric_id BIGINT Yes ID of the metric
metric_type MetricTypeEnum Yes Type of the metric
raw_value STRING Yes Value of the metric
timestamp DATETIME Yes Record creation time
scale DICT Yes Dict(min,max) Scale of the evaluation
source STRING Yes Source of the subjective metric

Table 37: Data Object: domain_tc_tss_do and domain_tss_do (first request)

Field Type Must Description

provider_service_id UUID Yes ID of the provider Service

Table 38: Data Object: domain_tc_retries_do (TSS module use case)

Field Type Must Description

module ModulesEnum Yes Module from where it came
provider_service_id UUID Yes ID of the provider Service
execution_id BIGINT Yes ID of the Execution
timestamp DATETIME Yes Record creation time

Table 39: Data Object: domain_tc_retries_do (remaining modules use case)

Field Type Must Description

module ModulesEnum Yes Module from where it came
execution_id BIGINT Yes ID of the Execution

Table 40: Data Object: domain_tom_do (first request)

Field Type Must Description

metric_id BIGINT Yes ID of the Metric
raw_value FLOAT Yes Value of the Metric
measure MeasureEnum Yes Measure of the Metric
timestamp DATETIME Yes Record creation time

Table 41: Data Object (retry requests): domain_tom_do, domain_tsm_do, domain_tss_do and
e2e_tps_do

Field Type Must Description

execution_id BIGINT Yes ID of the Execution

88

Table 42: Data Object: domain_tsm_do (first request)

Field Type Must Description

metric_id BIGINT Yes ID of the Metric
raw_value STRING Yes Value of the Metric
scale DICT Yes Dict(min,max) Scale of the evaluation
source STRING Yes Source of the subjective metric
timestamp DATETIME Yes Record creation time

If the error is of class type ErrorRequest or ExecutionError, a request ID (UUID) or a execution ID (BIGINT)

are added, respectively, to this data object.

Table 43: Data Object: e2e_tc_error_do and domain_tc_error_do

Field Type Must Description

module ModuleEnum Yes Module where the error was triggered
type TypeErrorEnum Yes Type of the error
stacktrace STRING Yes Stacktrace of the error
create_date DATETIME No Record creation time
comments STRING No Any necessary comment
status StatusErrorEnum No Status of the error

89

A.5 Database Model Information

A.5.1 Domain Level

Figure 38: Domain Database Entity-Relationship Diagram

90

Appendix B
Details of results

B.1 Test Plan

B.1.1 Unit Tests

Figure 39: Unit Test Plan Preview

B.1.2 Integration Tests

Figure 40: Integration Test Plan Preview

91

B.1.3 Workflow Tests

Figure 41: Workflow Test Plan Preview

Place here information about funding, FCT project, etc. in which the work is framed. Leave empty other-

wise.

	Introduction
	Context and Motivation
	Objectives
	Methodology
	Summary of Contributions
	Thesis Structure

	State of the Art
	6G Networks
	Comparison between 5G and 6G
	6G Network Vision

	Trust
	Trust definition
	Trust in a Multi-Stakeholder Scenario
	Trust Metrics and Trust Calculation
	Trust Service Level Agreement

	Distributed Ledger Technology
	Blockchain
	Smart Contracts

	Zero Touch Network & Service Management
	Related Work
	Work Foundation
	Other Works

	Trust Manager
	Introduction
	Architecture
	Workflows
	Trust Deployment and Activation Request
	Trust Deactivation Request
	Level of Trust Treatment

	Internal Architecture
	End-To-End Trust Controller
	E2E Trust Controller
	Trust Provider Score
	E2E PSM Integration

	Domain Trust Controller
	Trust Controller
	Trust Metric Processor
	Trust Service Score
	Integration Modules: PSM Integration
	Integration Modules: SLA Integration
	Integration Modules: Domain Integration

	Data Model
	E2E Level
	Domain Level
	Common

	Data Objects
	External Integrations
	Level of Trust Model: Analysis and Computation
	E2E Level
	Domain Level

	Implementation
	Work Methodology
	Technological Choices
	Code Structure
	Development Phases
	Phase 1: Database Implementation
	Phase 2: E2E Implementation
	Phase 3: Partial Domain Implementation
	Phase 4: Domain and SLA Integration Implementation
	Phase 5: Workflow Testing

	Critical Decisions

	Tests and Results
	Unit and Integration Tests
	Workflow Tests
	Practical Example

	Conclusions and Future Work
	Conclusions
	Future Work

	Support work
	External Integrations E2E Level
	Exposed interfaces
	Consumed Interfaces

	External Integrations Domain Level
	Exposed Interfaces
	Consumed Interfaces

	Workflows
	Data Objects
	External Data Objects
	Internal Data Objects

	Database Model Information
	Domain Level

	Details of results
	Test Plan
	Unit Tests
	Integration Tests
	Workflow Tests

