University of Minho
School of Engineering

Eva Miriam Pires de Castro

Security Data Analytics in 6G Open Networks

october 2024

N\
_/

I'\

University of Minho
School of Engineering

Eva Miriam Pires de Castro

Security Data Analytics in 6G Open Networks

Master’s Dissertation in Telecommunications and
Computer Engineering

Dissertation supervised by
Professora Doutora Maria Joao Nicolau

october 2024

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.
This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositbriUM of the University of Minho.

License granted to users of this work:

[Caso o autor pretenda usar uma das licencas Creative Commons, deve escolher e deixar apenas um dos
seguintes icones e respetivo lettering e URL, eliminando o texto em idlico que se lhe segue. Contudo,
é possivel optar por outro tipo de licenca, devendo, nesse caso, ser incluida a informacado necessaria

adaptando devidamente esta minuta]

CC BY

https://creativecommons.org/licenses/by/4.0/ [Estalicenca permite que outros distribuam,
remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam
o devido crédito pela criacao original. E a licenca mais flexivel de todas as licencas disponiveis. E re-

comendada para maximizar a disseminacdo e uso dos materiais licenciados.]

CC BY-SA

https://creativecommons.org/licenses/by-sa/4.0/ [Estalicenca permite que outros remis-

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

turem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam
o0 devido crédito e que licenciem as novas criacoes ao abrigo de termos idénticos. Esta licenca costuma
ser comparada com as licencas de software livre e de cddigo aberto «copyleft». Todos os trabalhos novos
baseados no seu terdo a mesma licenca, portanto quaisquer trabalhos derivados também permitirdo o uso
comercial. Esta é a licenca usada pela Wikipédia e é recomendada para materiais que seriam beneficiados

com a incorporacéo de conteudos da Wikipédia e de outros projetos com licenciamento semelhante.]

CC BY-ND
https://creativecommons.org/licenses/by-nd/4.0/ [Esta licenca permite que outras pes-
soas usem o seu trabalho para qualquer fim, incluindo para fins comerciais. Contudo, o trabalho, na

forma adaptada, ndo podera ser partilhado com outras pessoas e tém que lhe ser atribuidos os devidos

creditos.]

CC BY-NC

https://creativecommons.org/licenses/by-nc/4.0/ [Estalicenca permite que outros remis-
turem, adaptem e criem a partir do seu trabalho para fins ndo comerciais, e embora os novos trabalhos
tenham de lhe atribuir o devido cfédito e ndo possam ser usados para fins comerciais, eles ndo tém de

licenciar esses trabalhos derivados ao abrigo dos mesmos termos.]

CC BY-NC-SA

https://creativecommons.org/licenses/by-nc-sa/4.0/ [Esta licenca permite que outros
remisturem, adaptem e criem a partir do seu trabalho para fins ndo comerciais, desde que lhe atribuam

a si o devido crédito e que licenciem as novas criacoes ao abrigo de termos idénticos.]

CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/ [Esta é a mais restritiva das nos-
sas seis licencas principais, so permitindo que outros facam download dos seus trabalhos e os compartil-
hem desde que lhe sejam atribuidos a si 0s devidos créditos, mas sem que possam altera- los de nenhuma

forma ou utiliza-los para fins comerciais.]

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgments

The conclusion of this dissertation reflects the dedication and hard work invested over several years,
particularly during my master's degree. Achieving this milestone would not have been possible without

the support of many.

First and foremost, | want to thank Ivo for always supporting me and providing strength when | needed

it most.

| am grateful to my family — my sister, for always believing in me, and my parents, for providing the

means to pursue and complete my academic journey.

| extend my sincere thanks to Professor Doctor Maria Joao Nicolau for being a great advisor and for

all the guidance and support throughout the development of this dissertation.

| also wish to thank José and everyone at Optare Solutions for making this dissertation possible and

for contributing to build my professional career.

Finally, | would like to express my appreciation to everyone who, in some way, helped me overcome

this challenge. Your support has been invaluable.

Funding

This work has been partially funded by the "Ministerio de Asuntos Econémicos y Transformacion Digital”
and the European Union-NextGenerationEU in the frameworks of the "Plan de Recuperacion, Transforma-
cion y Resiliencia” and of the "Mecanismo de Recuperacion y Resiliencia” under reference 6G-OPENSEC

SECURITY (TSI-063000-2021-58).

45 optare®

solutions

Universidade do Minho

Financiado por Plan de Recuperacién, UN I C S
la Unién Europea Transformacién }ﬁé gy
& &

NextGenerationEU W\ Y Resiliencia lsb

Statement of Integrity

| hereby declare having conducted this academic work with integrity.

| confirm that | have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

| further declare that | have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Guimaraes, october 2024

Eva Miriam Pires de Castro

Abstract

The transition of mobile networks from rigid, proprietary architectures to open and flexible approaches,
known as Open Networks, presents new security challenges. Traditional networks, dominated by "vendor
islands” with specialized "black-box” hardware and software, are being replaced by "white box” hardware
with open interfaces, fostering innovation and competition. The adoption of Open Networks, driven by
initiatives like the O-RAN Alliance, is crucial for accelerating the deployment of 6G technology. However,
this transition introduces significant security risks due to the increased complexity and involvement of
multiple vendors.

This dissertation addresses these challenges by developing a system to autonomously detect and clas-
sify DDoS attacks using Machine Learning (ML), aligning with the principles of Zero-Touch Network & Ser-
vice Management (ZSM) architecture. The system integrates into the Security Manager of the 6GOPENSEC-
SECURITY project, specifically within the Security Closed-Loop Automation (SCLA) framework, enhancing
the security of network slices in a 6G environment.

A comprehensive study of existing systems revealed a gap in the application of ZSM principles and the
need for a solution tailored to 6G networks. The developed system employs a Convolutional Neural Network
(CNN) for detecting various DDoS attacks and a Random Forest classifier for attack type classification.
Despite challenges such as the lack of a suitable 5G dataset, the CICDD0S2019 dataset was utilized due
to its relevant characteristics.

The system provides low-latency detection, generates security reports, and includes a dashboard for
monitoring network security. It has been tested, demonstrating high accuracy (99.85%) and integration
with external systems. This system is ready for real-world testing in a 5G network slice environment and

is expected to serve as a robust foundation for enhancing security in 6G open networks.

Keywords: 6G, 5G, Cybersecurity, Machine Learning, Deep Learning, Open Networks, Zero-Touch Net-

works

Vi

Resumo

A transicao das redes mdveis de arquiteturas rigidas e proprietarias para abordagens abertas e flexiveis,
conhecidas como Redes Abertas, apresenta novos desafios de seguranca. As redes tradicionais, domi-
nadas por "ilhas de fornecedores” com hardware e software especializados, estdo a ser substituidas por
hardware "caixa branca” com interfaces abertas, promovendo inovacao e competicdo. A adocado de Redes
Abertas, impulsionada por iniciativas como a O-RAN Alliance, é crucial para acelerar a implantacéo da
tecnologia 6G. No entanto, esta transicao introduz riscos significativos de seguranca devido ao aumento
da complexidade e ao envolvimento de multiplos fornecedores.

Esta dissertacao aborda esses desafios desenvolvendo um sistema para detectar e classificar au-
tonomamente ataques DDoS usando Machine Learning (ML), alinhado com os principios da arquitetura
Zero-Touch Network & Service Management (ZSM). O sistema integra-se no Security Manager do pro-
jeto 6GOPENSEC-SECURITY, especificamente no ambito da framework Security Closed-Loop Automation
(SCLA), para melhorar a seguranca das network slices num ambiente 6G.

Um estudo abrangente de sistemas existentes revelou uma lacuna na aplicacao dos principios ZSM
e a necessidade de uma solucdo voltada para redes 6G. O sistema desenvolvido emprega uma Rede
Neural Convolucional (CNN) para detectar diversos ataques DDoS e um classificador Random Forest para
a classificacao dos tipos de ataque. Apesar dos desafios, como a falta de um conjunto de dados adequado
para redes 5G, foi utilizado o conjunto de dados CICDD0S2019 devido as suas caracteristicas relevantes.

O sistema fornece deteccao de baixa laténcia, gera relatrios de seguranca e inclui um painel para
monitoriacao da seguranca da rede. O sistema foi testado, demonstrando alta precisao e integracdo com
sistemas externos. Este sistema estd pronto para testes em cenarios reais num ambiente 5G Netowrk
Slicing (NS) e espera-se que sirva como uma base robusta para melhorar a seguranca em redes abertas

6G.

Palavras-chave: 6G, 5G, ciberseguranca, Machine Learning, Deep Learning, Redes Abertas, Redes

Zero-Touch

Vil

Contents

1 Introduction

L1 Context
1.2 Motivation
1.3 Main Aims
1.4 Main Contributions
1.5 Dissertation Structure Lo

2 Study of 5G and 6G networks

2.1 5GNetworks
211 Overview
2.1.2 NetworkSlicing.
2.2 6GNetworks
221 Overview L
2.2.2 TheNeedforSecurity
223 0penness e e
224 TheRoleof ML

3 Security in 5G Networks

3.1 Security Framing Concepts
3.1.1 Vulnerabilities
3.1.2 Anomalies L
313 Attacks
3.2 Attack Detection Systems
3.2.1 Intrusion Detection Systems L
3.2.2 Detection methodology
3.2.3 MLBased Detection

3.24 Challenges e
3.3 RelatedWork
4 Architecture
4.1 ComponentArchitecture
411 Attack Detection Approach
4.1.2 Threat Classification Approach
4.2 Overall System Architecture
4.3 ZSMArchitecture
5 Implementation
5.1 TechnologiesandTools
5.1.1 CoreTechnologies e
5.1.2 Librariesand Frameworks
5.2 ModelsTraining e
5.2.1 Datasetdescription
5.2.2 Attack Detection Model
5.2.3 Threat Classification Model
5.3 Implementation Details
531 Message Broker
5.3.2 Data Processing & Transformation Engine
5.3.3 Anomaly Detection Engine oL
5.3.4 Threat Classification Module,
5.3.5 Real-Time Analytics & Stream Processing
5.3.6 ReportingModule
5.3.7 Feedback & Optimization Engine
53.8 AlertModule
5.4 Development Process
541 UnitTests
5.4.2 IntegrationTests
6 Results and Discussion
6.1 Model's Trainingand Testing
6.1.1 Models Evaluation Metrics

35
35
38
40
42
43

45
45
46
48
49
49
51
53
54
55
56
58
60
60
62
63
63
64
64
65

6.1.2 DDoS Detection Model
6.1.3 Threat Classification Model
6.2 System Evaluationand Testing
6.2.1 Precisionand Efficacy
6.2.2 Performance
6.2.3 Resilience

7 Conclusions and future work

7.1 Conclusions

7.2 Prospectforfuturework

References

A Details Of Results
Al ROC Curve Graphics
B Data Objects
B.1 Data Object Sent by Security Data Collection
B.2 Data Object Sent to Anomaly Detection Engine
B.3 DataFrames
B.4 DataObjectof Threat Report
B.5 Data Objects of Model TestingResults
C Frontend Templates
C.1 Dashboard Templateso
D Tooling
D.1 KafkaGUlI e

80
80
81

83

89
89

91
91
92
93
94
95

97
97

98

List of Figures

(@2 B R CS I) O]

O 00 ~N O

11
12

13
14
15

16
17
18
19
20
21
22
23
24

5G and 4G comparison of performance requirements [7]. 7
5G applications [11]. L 8
Network Slicing in 5G [12]. 9
Expected requirement and application of 6G networks [20]. 12
6G security threat panorama [21]. 13
Graphical representation of Decision Tree algorithm. 25
Graphical representation of SVM algorithm. 25
Graphical representation of Random Forest algorithm. 26
CNN image classification representation [60]. 27
Secure5G model overview [71]. 31
DeepSecure framework overview [73]. 32
Approach to detect botnet attacks [75]. 33
SDA's architecture. 36
Framework for the 6G-OPENSEC-SECURITY project. 42
ZSM framework reference architecture [82]. 43
Python programming language logo. (Python) 46
PostgreSQL database managing system logo. (PostgreSOQL) 46
Apache Kafka message broker logo. (Apache Katka) 47
Docker logo. (Docker) e 47
TensorFlow library logo. (TensorFLow) 47
GitHub plataform logo. (GitHub) 48
DDoS Attacks proposed taxonomy [74]. 50
Internal workflow. 55
Flowchart of the Data Processing & Transformation Engine process. 57

Xi

25
26
27
28

29
30
31
32

33
34

35
36
37
38
39
40
41
42

43
44

45
46
47

Activity Diagram of the Anomaly Detection Engine process.
Dash Tab for DDoS Count. e
Dash TabforDDoSRate.

Development process with unitarytests.

Decision Tree model ROC curve.
Random Forest model ROC curve.
SVMmodel ROC curve.
CNN model ROC curve. o

Example of data object containinga PCAP chunk.

Example of data object sent to Anomaly Detection Engine containing the path to the PCAP

Example of Data Frame containing the results of flows detection and classification.
Example of Data Frame containing the DDoS rate overtime.
Example of Data Frame containing the DDoS rate pertype.
Example of Data Frame containing the results of LUCID model testing.
Example of Data Frame containing the results of Random Forest model testing.
Example of data object representing a threat report in JSON format.
Example of data object representing the LUCID results sent to Security Decision.

Example of data object representing the Random Forest results sent to Security Decision.

Dash Tab for DDoS Rate pertype.
Dash Tab for Model Test Results.

Broker topics in Katka GUI. L
Messages sent in the pcap_chunk topic.

Active broker nodes.

Xii

List of Tables

O© 00 N o o b

11

Comparison of anomaly and misuse detection. 22
Related work summary. e 34
SDA modules description. 37
LUCID Testing Model Results. 70
Models training and validation results. 71
Testing Models Results. 71
Precision, Recall, F1-Score, and Support for Each Class 73
Results for benign flows classification. 75
Results for malicious flows classification. 76
Processing time and quantityof flows. 77
Results for unknown malicious flows classification. 79

Xiii

Xiv

Acronyms

2D Two-Dimensional.
3D Three-Dimensional.
4G Fourth-Generation.
5G Fifth-Generation.
6G Sixth-Generation.

Al Artificial Intelligence.
ANN Artificial Neural Network.
AUC Area Under ROC Curve.
AWS Amazon Web Services.

CI/CD Continuous Integration/Continuous Delivery.
CLA Closed-Loop Automation.
CLI Command Line Interface.

CNN Convolutional Neural Network.

DDoS Distributed Denial-of-Service.
DL Deep Learning.
DNS Domain Name System.

DoS Denial-of-Service.

E2E End-to-End.

ETSI European Telecommunications Standards Institute.

FN False Negative.
FNR False Negative Rate.

XV

FP
FPR

GPU
GUI

HIDS

JSON

LSTM
LUCID

MITM
ML
MSE

NFV

NGMN

NIDS

NS

O-RAN

PCAP

False Positive.

False Positive Rate.

Graphics Processing Unit.

Graphical User Interface.

Host Intrusion Detection Systems.

lterative Dichotomiser 3.
Intrusion Detection Systems.
Internet of Things.

Internet Protocol.

Information Technology.

JavaScript Object Notation.

Long Short Term Memory.
Lightweight, Usable CNN in DDoS Detection.

Man-in-the-Middle.

Machine Learning.

Mean Squarred Error.

Network Functions Virtualization.
Next Generation Mobile Networks.
Network Intrusion Detection Systems.
Network Slicing.

Open Radio Access Network.

Packet Capture.

XVi

QoS

ROC

SCLA
SDA
SDN
SQL
SVM

TN

TNR

TP

TPR

UE

V2X

ZSM

Quality of Service.

Receiver Operating Characteristic Curve.

Security Closed-Loop Automation.

Security Data Analytics.

Software Defined Networks.

Structured Query Language.

Support Vector Machine.

True Negative.

True Negative Rate.

True Positive.

True Positive Rate.

User Equipment.

Vehicle To Everything.

Zero touch network & Service Management.

XVii

1

Chapter 1

Introduction

This chapter contextualizes the shift from traditional closed architectures to open and flexible paradigms
in mobile networks field. Emphasizing the challenges posed by multi-vendor, disaggregated networks,
the chapter explores the motivation for enhancing security measures. It outlines the dissertation objec-
tives, focusing on the development and implementation of security mechanisms within the 6GOPENSEC-

SECURITY project. The chapter finalizes with an overview of the dissertation’s structure.

1.1 Context

Mobile networks are transitioning from inflexible architectures that rely on specialized "black-box” hardware
with proprietary software to more open and flexible approaches known as Open Networks. Traditionally,
these networks have depended on hardware and software designed and patented by a limited number of
vendors, resulting in "vendor islands” where each network segment relies on specific proprietary solutions.

In recent years, there has been a significant shift towards replacing these traditional architectures
with open solutions. This involves the use of "white box” hardware with open interfaces, allowing for the
integration of software from any vendor [1]. This trend promotes the decoupling of hardware and software
vendors, fostering greater diversity and competition within the telecommunications market.

One of the most notable initiatives driving this transition is the Open Radio Access Network (O-RAN)
Alliance!. Open networks not only encourage innovation and the entry of new providers but also have
the potential to accelerate the deployment of Sixth-Generation (6G) technology in a more competitive and
cost-effective manner, reducing reliance on incumbent providers.

However, the adoption of open networks introduces significant security challenges. The presence of
multiple providers in a complex environment increases the risk of new vulnerabilities [2]. In the context

of Fifth-Generation (5G) networks, a new architecture called Network Slicing (NS) has emerged. A slice

https://www.o-ran.org/

https://www.o-ran.org/

2

is a logical network offering specific capabilities and features tailored to different market scenarios. This
architecture enhances the openness of mobile networks.

Security in network slices is paramount, encompassing user authentication, transaction accounting,
and the detection of active security threats. With the advent of 6G networks, these security concerns are
intensifying, particularly in an open, multi-vendor environment.

Given these factors and the new security challenges presented by the next generation of mobile net-
works, there is a pressing need for more agile, responsive, and autonomous security mechanisms that

differ from traditional approaches.

1.2 Motivation

The cybersecurity landscape in the context of next-generation communication networks faces significant
challenges. 6G networks, with their open and multi-vendor architectures, introduce additional complexities
that existing security solutions are not adequately equipped to handle [3]. Traditional security approaches
exhibit notable deficiencies in addressing the complex demands and threats impacting 6G communication
infrastructure [4]. These deficiencies include an inability to respond rapidly to emerging attacks and a lack
of adaptability to the dynamic and open environments of modern networks.

To address these security challenges in open and disaggregated 6G networks, the European project
6GOPENSEC-SECURITY? focuses on the design and implementation of an intelligent and autonomous se-
curity manager. This manager is responsible for the management of network slices with specific security
requirements in multi-vendor 6G networks. A key component of this project is the implementation of a
Security Closed-Loop Automation (SCLA), a proactive and adaptive strategy designed to ensure network
resilience through continuous monitoring, threat identification, and the automatic deployment of counter-

measures, capable of meeting the challenges posed by the next generation of communication networks.

1.3 Main Aims

The primary aim of this dissertation is to contribute to the overarching objectives of the 6GOPENSEC-
SECURITY project by focusing on the design and implementation of the Security Data Analytics (SDA)
component, part of the SCLA. This work plays a role in enhancing the overall security posture of 6G
networks, leveraging Machine Learning (ML) techniques to detect security threats in real-time.

The general objectives of this dissertation are:

https://www.cttc.cat/project/secure-network-slice-manager-for-open-and-disaggregated-6g-networks/

https://www.cttc.cat/project/secure-network-slice-manager-for-open-and-disaggregated-6g-networks/

3

¢ Develop robust methodologies for analyzing security data to detect attacks in 6G networks.

* Contribute to the creation of an intelligent and autonomous security manager capable of operating

with minimal human intervention.

¢ Align the development of the SDA component with the broader objectives of the 6GOPENSEC-

SECURITY project, ensuring seamless integration within the overall architecture.
The specific objectives are:

¢ Design and implement the SDA as part of the SCLA following the Zero touch network & Service
Management (ZSM)? architecture principles, developed by European Telecommunications Stan-

dards Institute (ETSI).

¢ Utilize ML models to analyze large volumes of network data, identifying patterns and abnormal

behaviors indicative of security threats.

¢ Promote the automation of security processes, reducing the need for human intervention through

automated threat detection mechanisms.

¢ Ensure that the SDA component operates seamlessly within the SCLA to provide continuous, adap-

tive security management.

By achieving these objectives, this dissertation aims to develop a system to detect security attacks
with high accuracy and low latency, for efficient attack detection, automate all processes to achieve a
zero-touch approach, and integrate this system into the SCLA component of the security manager of the
6GOPENSEC-SECURITY project to enhance the security of network slices and 6G networks.

It is important to note that the system will be developed to detect specifically Distributed Denial-of-

Service (DDoS) attacks, once it was the test case proposed for the 6GOPENSEC-SECURITY project.

1.4 Main Contributions

The research and work achieves with this dissertation was aligned with the Research and Development
project, 6GOPENSEC-SECURITY, as already mentioned, in a collaboration with Optare Solutions (Spain),

and other partners.

https://wuw.etsi.org/technologies/zero-touch-network-service-management

https://www.etsi.org/technologies/zero-touch-network-service-management

This research included: the survey of 5G and 6G networks and its respective security state; the study
and application of ML mechanisms for DDoS detection; specification and development of an intelligent
applications to enhance security.

This tasks resulted in the development of a component capable of analyzing network traffic and de-
tecting the presence of DDoS attacks, leveraging ML mechanisms. This component is going to be tested
in a real bG environment to justify its applicability in the future 6G networks.

Additionally, this research also resulted in scientific publications:

Enhancing Network Slicing Security: Machine Learning, Software-Defined Networking, and
Network Functions Virtualization-Driven Strategies [5]
José Cunha, Pedro Ferreira, Eva M. Castro, Paula Cristina Oliveira, Maria Jodo Nicolau, van Nufiez, Xosé

Ramon Sousa, and Carlos Serddio. Future Internet 16, no. 7: 226. 2024.

Security and Trust in Open and Disaggregated 6G networks [6]
Pol Alemany, Raul Mufioz, R. Vilalta, LI. Gifre, R. Martinez, R. Casellas, Eva M. Castro, P. Ferreira, D.
Moreira, J. Garcia, J. Cunha, I. Nufiez, G. Gomez, S. Castro, A. Pastor and D. Lopez. 24th International

Conference on Transparent Optical Networks (ICTON). 2024.

1.5 Dissertation Structure

This dissertation is structured into six chapters, each serving a distinct purpose in the exploration and
development of this dissertation:

In the first chapter, the focus is on introducing the dissertation’s theme, providing context, discussing
the motivation behind the chosen topic, outlining the main objectives, and giving a brief overview of the
dissertation’s organization.

The second and third chapters explore key theoretical concepts fundamental to the dissertation’s
progression. Chapter two specifically addresses 5G and 6G networks, highlighting their security challenges.
Chapter three focuses on intrusion detection systems, discussing relevant research and existing work in
the field. Both chapters provide essential background knowledge.

Chapter four is dedicated to describing the architecture of the solution, outlining its underlying princi-
ples, and detailing its integration within the overarching project framework.

The fifth chapter concentrates on the development of the solution. It explores the decisions made

during the implementation process and outlines the methodology employed.

In the sixth chapter, case studies and testing procedures are presented. This section describes the
conducted case studies, outlines the testing methodologies applied, and provides an analysis and discus-
sion of the obtained results.

Finally, the seventh chapter concludes the dissertation by summarizing the findings and insights gained
from the research. It also discusses future perspectives and potential avenues for further development

within the scope of the project.

Chapter 2

Study of 5G and 6G networks

This chapter gives a thorough summary of the most recent advances and trends in telecommunications,
with a particular emphasis on the development in 5G networks and the expected transition to 6G technol-
ogy. This chapter attempts to contextualize the continuous evolution in the telecommunications landscape
by analyzing the capabilities of bG, such as increased data rates and decreased latency, in addition to the

potential features of 6G, with the focus on the security paradigm of these networks.

2.1 5G Networks

This section presents an overview of the 5G networks, it will be provided a vision of the evolution from
Fourth-Generation (4G) to 5G in terms of radio performance and new approaches for 5G architecture and
deployment. Also, it will be presented what is NS and its importance, and the security as well as the

security and privacy challenges associated with this technology..

2.1.1 Overview

The innovative fifth generation of cellular networks, or 5G, is designed to provide far more than just tra-
ditional cellular services. [7]. 5G was design to bring new capabilities such as higher data rates, lower
latency, and multiple device connectivity [8], once due to the increasing mobile traffic and the rapid growth
of communication infrastructures, 4G is no longer able to meet users’ actual needs [9].

Therefore, in comparison of its antecedent, 5G communications are compromised to have [8]:
* data rate 10 times faster.
¢ Jatency 10 times slower.

¢ higher bandwidth and spectrum efficiency.

¢ |ow cost.

¢ much more connected devices.

Figure 1 synthesizes the evolution of the performance requirements from 4G to 5G, also showing some

of the technologies used.

4G - LTE 5G - NR
Peak Data
Rates DL: 1Gb/s DL: 20 Gb/s
Experienced DL: 10 Mb/s DL: 100 Mb/
Data Rates : : s
Mobility 350 Km/h 500 Km/h

2 .

Figure 1: 5G and 4G comparison of performance requirements [7].

Beyond its improved radio capabilities, 5G’s revolutionary potential comes additionally from its flexi-
bility. Until now, cellular network deployments have relied on 'black-box’ methodologies, where hardware
and software are plug-and-play devices with minimal or no reconfiguration options [1]. This architecture is
thought to be lacking in the scalability and flexibility required to effectively handle a wider range of business
needs, each with distinct requirements for availability, scalability, and performance [10]. This rigid, mono-
lithic infrastructure, are unable to accommodate the tight needs of 5G applications and the heterogeneity
and variety of 5G scenarios [1]. So, the transition in mobile networks involves moving away from traditional
inflexible architectures, characterized by dedicated hardware and proprietary firmware/software, towards
disaggregated setups using open source software [1]. This new approach can be achieved by the use of
technologies such as NS, Software Defined Networks (SDN), Network Functions Virtualization (NFV), etc.
Furthermore, a highly flexible and scalable 5G network is required, as numerous use cases are anticipated
to be active concurrently in operator networks [10]. This way 5G networks can effectively adjust to the
specific needs of different use cases, making its flexibility evident, guaranteeing a smooth and responsive
infrastructure to support the wide range of applications, going from smart cities and homes, to healthcare

and smart transportation [7]. Figure 2 provides a visual representation of some of the applications of 5G.

Gigabytes (<

= H N
@ in asecond @VF

N
NETWORK SLICING .j:u

Self Driving Car

Industry
automation.

.
Yoy
® nnnl:
T,
T
Work and play
in the cloud
Augmented reality 3D video, UHD screens

Copyright © 2018 TSI

Figure 2: 5G applications [11].

2.1.2 Network Slicing

As mentioned earlier, NS is one of the key technologies used by 5G, to achieve its flexibility, symbolizing a
break from conventional, monolithic network topologies by bringing a highly configurable framework.

In very simple terms, NS refers to the creation of End-to-End (E2E) isolated, tailored logical networks
on top of a common underlying network infrastructure, using technologies like SDN and NFV [12], With a
decided-upon service-level agreement, it is customized for a specific service type [13]. NS, a foundational
concept in 5G technology, revolutionizes connectivity by implementing virtualization principles. This is a
crucial technological and commercial enabler for 5G in addition to making service customisation, isolation,
and multi-tenancy support easier [14].

The essence of NS lies in dividing a physical network into isolated logical networks, each dedicated to
different services based on their unique requirements and characteristics [15]. It separates network func-
tions from hardware and software components by using virtualization techniques. Users are then shown
these abstracted functionalities as separate virtual networks, each with its own set of resources and func-
tioning independently [1]. Network operators can provide unique solutions for a range of market situations
[15]. This method maximizes resource usage and creates new economic opportunities by enabling service
differentiation, leasing of unused resources, and real-time adaptability to traffic demand [1].

So, NS is important and revolutionary, since it may offer specialized network services to various user

and application types while guaranteeing that every slice satisfies unique performance, security, and pri-

1

vacy requirements.

Figure 3 gives a visual representation about what is NS and some applications areas.

W (e 5 B “\"'\i e
- h,:—___i u___-u i%% i

Figure 3: Network Slicing in 5G [12].

However, effective orchestration is required for network slices [15]. Orchestration is the coordination
of various network operations that are designed to generate, manage, and provide services in a slicing
context. In order to provide strong isolation and enable the functioning of parallel slices on a common
underlying substrate, the orchestration process also involves defining relevant policies and mechanism
[12]. Also, it plays a crucial role in meeting Service Level Agreements and fortifying resilience against
failures and outages [1]. Its purpose is resource allocation and the management of network slices to cater
to the varied requirements of distinct services [9]. This includes ensuring performance isolation to meet
particular service needs and E2E performance regardless of load and performance in other slices [12].

NS has several benefits, however it poses serious security and privacy concerns. Because every slice
is independent and has particular characteristics, maintaining user privacy and putting robust security
measures in place across these slices present complex challenges. The Next Generation Mobile Networks
(NGMN) Alliance !, wrote some security recommendations about 5G NS, presented in [10].

The challenges in terms of privacy and security that arise from NS are complex and involve many
important factors. NS creates complexities in orchestrating slices across several proprietary virtual plat-
forms, each with distinct security characteristics, as well as inter-slice security concerns. Network sharing
between slices belonging to various tenants can give rise to security issues, which is why it is important to
use extra parameters to differentiate the necessary security levels for each slice [14].

Strong isolation techniques must be put in place to overcome these issues and prevent potential

https://wuw.ngmn.org/

https://www.ngmn.org/

attacks or faults in one slice from influencing other slices. Each slice necessitates independent security
functions to thwart unauthorized access to slice-specific information, emphasizing compartmentalization
at each virtualization level [12]. Therefore, it is crucial to guarantee the security and isolation of every
slice in order to prevent unwanted access or interference between slices [1]. You et al. consider the slice
isolation the most crucial NS property [13].

Robust actions must be taken to avoid data breaches or unauthorized access in order to protect
user privacy and their data within each slice. The problem also arises with shared infrastructure compo-
nents, where extra caution is required to avoid jeopardizing the confidentiality and privacy of each slice.
This necessitates a comprehensive strategy that includes robust security measures and privacy-preserving
methods tailored to the specific requirements of NS to overcome these challenges [1].

In result, addressing the complex security and privacy issues raised by NS in 5G requires an extensive
multi-level security framework [12]. This framework should include components such as software integrity,
remote attestation, dynamic threat detection and mitigation, user authentication, and accounting manage-
ment, essential to maintaining the dependability and credibility of NS in the dynamic telecommunications
environment. Effectively dynamic managing of network slices is essential to accommodate diverse services
while addressing challenges related to isolation, security, and scalability [13]. Also, ML can be a great ally
in achieving security in the 5G NS environment. Due to the growing number of connected devices and
exchanged data, traditional threat detection is becoming obsolete, and there is a need to introduce ML
based solutions, this way ML turns out to be a powerful solution for addressing security challenges in 5G

[9].

2.2 6G Networks

This section will address a vision of the 6G networks with an emphasis on security issues. An overview
of 6G networks and their improvements over 5G networks will be provided. Similarly, the importance of
security in the context of 6G, the notion of openness, and the idea of ML as a major facilitator of 6G

functionalities and security, should all be understood.

2.2.1 Overview

The introduction of 5G was a major step forward in building a high-performance network, completely
changing how we engage with the digital world. With the advent of NS, 5G networks open the door

to supporting enormous numbers of end devices and many logical networks [3]. Despite all of these

10

advancements, 5G networks might not be able to keep up with the future demands [16], once it is expected
that a large volumes of data will be produced as the actual world gradually transitions to full digitization
[3]. 5G networks won't be able to offer an entirely automated, intelligent network [17], once it is expected
that mobile communications will be far more prevalent in our daily lives than they are now. So, the next
generation of mobile networks, or 6G, will enable us to address the issues that may arise in 2030 and
beyond [3].

While 6G represents an evolution in mobile technology, it inherits many security challenges from 5G.
Issues such as vulnerabilities in network architecture, data privacy concerns, and the complexities of
managing numerous connected devices will not only persist but are expected to intensify with the rollout of
6G. As the number and diversity of connected devices increase, alongside the anticipated full adoption of
open network concepts and NS related technologies, the potential attack vectors will also expand, resulting
in a more complex security landscape.

6G’s development is being driven by the growing need for advanced wireless connectivity that can
accommodate a range of changing needs for new services and applications [18]. This requirement is
brought on by the exponential increase in mobile traffic and subscriptions, which intensifies the demand for
ongoing network efficiency improvements. Simultaneously, the 6G system aims to fulfill the requirements
of existing services while creating opportunities for disruptive innovations [19].

6G is positioned to offer a significant increase in coverage, peak data rate, user experience rate,
system capacity, and connectivity density, while meeting strict criteria in latency, dependability, mobility,
and security [19]. 6G'’s global reach is a key focus, with goals including increased intelligence, security,
and resilience along with improved spectral, energy, and cost efficiency [13]. Some of the performance
requirements and application areas of 6G are shown in Figure 4.

Additionally, in order to increase network management and automation, 6G will need to integrate
Artificial Intelligence (Al) and ML technologies, this will allow for the dynamic coordination of networking,
caching, and computing resources, which will boost the 6G network systems [13].

In this way, 6G, as the next generation of wireless communication technologies, is crucial for address-
ing advanced security and privacy challenges, meeting the needs of emerging technologies, and supporting
a constantly evolving application environment. However, it is vital to critically analyze the security chal-
lenges that 6G will face, as these challenges — many of which stem from its predecessor, 5G — must be

addressed to ensure the robustness and reliability of future networks [21].

11

[e==0]
[©="=0)
Quantum Machine ..
Learning Telemedicine Blockchain
z -
£ s =
2 v
. . Y, Z & i
Bio-Internet of Things - ,/’2-0 2 AT ‘Vmb]e Light
-— Y, E i | Communication |
E 3 2
p) S el
oA 5 =
-] Sl
=i Eﬂ DL Data Rate > | This UL Data Rate > 1 This g. Egﬁ.
Cell-less Architecture ¢ Terahertz Communication
L~ - - = " | = 4
9 = .
Sl TR = |
W& g f
F i+ L I
i M= [
2T R
& =&

Quantum Computing

Edpe-bascd Federated Learning Model

Gickal Losal Mockls o'
Model Agpregation =

Federated Learning

e
3D Networks

Figure 4: Expected requirement and application of 6G networks [20].

2.2.2 The Need for Security

The introduction of 6G technology presents until now unprecedented challenges, especially in the field of
security. As noted by Bernardos et al. [3], ultrahigh levels of security are required to maintain trust and
data privacy given the massive volume of data handled by 6G systems across a variety of critical appli-
cations. Innovative approaches like slicing and zero-touch micro-segmentation are needed to overcome
these challenges. Because of the wide range of applications that 6G will offer, they demand sophisticated
network and security requirements, specially with the increase of skilled attackers and malicious activity

[21]. Figure 5 gives a vision of the security threat panorama in 6G.

12

" security threats with] Data privacy

closed-loop network threats g
p s automation AUML attacks \
Y, Al/ML attacks Securlty
A 'Intelllgence @ threats on *,
; - loud
/" Open API network : .‘)L clou
L security threats . apagemen
/ Q Edge Security
intelligence »., threats on
/ %, edge
/ Orchestratio Py
; Cloudificatior®

| DDes i |

attackson . ' Trust
| devices | 1-' i violations |
| o H) i |
\ ¢ Devices {
i - Architecture Specialized

s Consumer end subnetworks
L ", (End Users) F AIML
' User Privacy *, g attacks |

threats _
\ 2% p
.. Inteligence " PHY layer

‘_.. /
N\ . 'RAN Core rdo_ security
A con\.ergence threats /
\\ /
\ PHY Iaylr security @ /

AI/ML attacks /

Figure b: 6G security threat panorama [21].

According to the European Vision of 6G [3], 6G will pass to a multi-vendor paradigm that can poten-
tially increase the threat surface for malicious attacks. The integration of open networks concepts, such
as ORAN?, in 6G networks, along with the disaggregation and proliferation of standardized and open inter-
faces, contribute for the need of higher levels of security. The openness of 6G networks will be discussed
further.

Furthermore, NS was suggested in 5G as a crucial networking technology enabler [20], but its full
implementation is anticipated in 6G. More sophisticated NS techniques in 6G might potentially expose the
network to new threats [22].

Given this, it is expected that security challenges associated with 6G systems will be more complex
than those affecting current 5G systems [19]. In today’s linked world, maintaining privacy and security is
still a major concern [23]. Thus, the development of innovative and all-encompassing security and privacy

solutions is required for communication networks.

2.2.3 Openness

The landscape of 6G networks is rapidly changing, and one prevalent idea that has emerged is openness.

This common vision for the innovative network architecture highlights the necessity for new interfaces,

https://www.o-ran.org/

13

allowing a wider range of hardware and software providers to enter the telecom market [18].

In line with the vision for openness, and according to Zhou et al. [24], openness at both the net-
work architecture and interface levels, will turn 6G a more flexible and intelligent network. On the one
hand, a crucial idea in the network architecture’s openness is NS, it enables service providers and vertical
industries to quickly launch new services, on top of the same common physical infrastructure, enabling
the decoupling of hardware and software. On the other hand, open interfaces are essential to vendor
connectivity, teamwork, and a strong supplier ecosystem. The ownership of physical infrastructure is ex-
panding beyond mobile providers as 6G connects with vertical sectors. Smooth interoperability requires
open interface designs and standardization.

Despite the many perks, the 6G ecosystem becomes more complex and risky due to the integration of
multi-vendor and open source software [2]. While the openness of the network in 6G enhances flexibility in
network management and resource utilization, it amplifies the prominence of security issues, necessitating
robust measures to safeguard against potential threats and vulnerabilities in the evolving network landscape
[24].

In essence, the 6G network architecture’s pursuit of openness promises a revolutionary change in the
telecom sector that encourages cooperation and creativity. But as the network becomes more capable,
maintaining a careful balance between security and flexibility is crucial to preserving the robustness and

dependability of 6G networks.

2.2.4 The Role of ML

ML turns out to be a major force behind the development of 6G networks, being essential to many facets of
network functionality and security [20]. Network management and intelligent orchestration are intimately
related to 6G, as a result, Al/ML plays a crucial role in the 6G paradigm [25].

According to the European Vision for 6G Networks [3], Al/ML will be used in a wide range of areas,
for example, to automate processes and network functions, to achieve a zero-touch approach, and also for
the optimization of the physical layer. We can therefore assume that Al/ML will play a major role in the
development of the next generation of 6G mobile networks. [25].

Furthermore, higher peak rates and the expected massive volume of data generated in the 6G net-
works, will encourage the integration of Al/ML in the 6G network security design [13], thus the use of ML
technigues becomes imperative to achieve security.

ML can be used as part of an intelligent and flexible security mechanism, capable of predicting,

detecting, containing, mitigating, and preventing threats and active attacks, thereby limiting the spread of

14

vulnerabilities [21, 22], having a crucial role in the detection of new types of attacks [2].

The vision for 6G security, highlights the necessity for security automation by emphasizing the inte-
gration of Al, especially ML [21]. The merge of ML with concepts like virtualization and security function
softwarization, plays a vital role in the automated security [17], strengthening security measures across
the entire network infrastructure, including E2E network security [22].

In summarized form, ML is a key component of the security architecture of 6G networks. It enables
the automation of complex tasks, such as intelligent orchestration and autonomous adaptation of security
systems [2]. Helps to provide automated security, flexible defenses, and creative solutions to deal with
the constantly changing security issues in these next-generation networks. Ensuring security is essential
to making the 6G vision a reality. Intelligent and trustworthy security solutions are offered by Al-enabled
network security [25].

Regardless of all the promising applications of Al in 6G networks, there are some issues that should
be addressed. Siriwardhana et al. [26] talks about four issues areas: security, privacy, ethical and the use

of Al to launch intelligent attacks.

* Security - Specially ML systems face security threats like poisoning attacks, evasion attacks, and

APl-based attacks.

* Privacy - Al's large-scale data analysis and automation needs in 6G networks can compromise
privacy. Insecure loT devices and model inversion attacks on ML can target data theft and privacy

violations, making it crucial to protect user data.

¢ Ethical - Al in 6G networks reduces the need for human intervention, yet computers are not as
ethically conscious as humans. Although Al systems can operate in accordance with their training,

unlike humans, they are not capable of acting against logic in some circumstances.

¢ Intelligent Attacks - Al can be used to identify patterns in large data volumes, potentially exposing

network vulnerabilities

Without doubt, Al/ML will revolutionize the future of networks, however it is necessary to have in mind

the challenges it can bring.

15

Chapter 3

Security in 5G Networks

This chapter delves into the description of Intrusion Detection Systems (IDS). It begins by outlining the
fundamental concepts of security, followed by an examination of the various IDS technologies. Additionally,
the chapter explores the integration of ML techniques in IDS to enhance detection accuracy and response
times. It further reviews related work in the field, showcasing existing research and methodologies for
implementing ML-based IDS in 5G networks. The goal of this comprehensive review is to provide readers

an accurate understanding of the state-of-the-art in IDS for 5G networks.

3.1 Security Framing Concepts

This section aims to provide some explanation and definition of some important concepts that will be

crucial for the understanding of the next sections and chapters.

3.1.1 Vulnerabilities

A vulnerability in an Information Technology (IT) system is a weakness that attackers can exploit to carry out
successful attacks. Vulnerabilities can come from flaws in design or implementation, misuse of intended

features, or user errors [27]. Next, it is presented some kinds of vulnerabilities:

¢ Flaws - unintended functionalities resulting from design or implementation mistakes, and they may

go undetected for a significant period.

¢ Zero-day vulnerabilities - vulnerabilities discovered before being mitigated. Attackers actively

sought after these kind of vulnerabilities and exploited them, posing big a risk to systems.

¢ Features - intended functionalities that can be misused by attackers. Although features can im-

prove user’s experience or system’s efficiency, they can be wrongly exploited.

16

¢ User errors - such as choosing weak passwords or leaving devices unattended. Users are a great

source of vulnerabilities, turning well-designed systems insecure.

3.1.2 Anomalies

Any deviation from the established regular communication patterns inside a network is referred to as an
anomaly in the context of network communication. On one hand, the anomalies could be deliberate inter-
ruptions meant to jeopardize the security of the network, such as malware invasions and cyberattacks. On
the other hand, anomalies may result from technical issues with the network architecture, such corrupted
data packets or changes in communication patterns brought on by equipment malfunctions, capacity

constraints, or network issues [28].

3.1.3 Attacks

Cisco defines a cyberattack as a "malicious and deliberate attempt by an individual or organization to
breach the information system of another individual or organization. Usually, the attacker seeks some
type of benefit from disrupting the victim’s network” [29]. In other words, we can classify a cyberattack
as any intentional and unauthorized activity on a network, computer service or digital device that aims
to breach its security, alter its operations, services and access confidential information, in order to extort

money from the victims or stop the service. According to Cisco, the most common cyberattacks are [29]:

* Denial-of-Service (DoS) - DoS attacks are a tactic used by adversaries to interfere with expected
device or network functionality. DoS attacks involve, for example, sending a request that the target
device is unable to handle or flooding it with a large number of requests in a brief amount of time.
The disrupted target may become unresponsive for a while, maybe until it can be rebooted [30].
Sometimes attackers can exploit vulnerabilities to perform a DoS, or they can do it by exhaust-
ing bandwidth, router processing capacity or network resources (network/transport-level), or even
by exhausting the server resources (e.g., sockets, memory, disk/database bandwidth, etc.) [31].
Nowadays, it is common attackers to use more than one source to execute the attack, being called

a DDoS.

* Man-in-the-Middle (MITM) - MITM is a kind of attack where a malicious actor secretly takes
over the communication channel between two or more endpoints. The attacker has the capability

to intercept, modify, alter, or substitute the communication traffic exchanged by the victims, setting

17

it apart from a mere eavesdropper. Victims remain ignorant to the presence of the intruder, believing

that the communication channel is secure [32]. MITM attack aims to compromise:

— Confidentiality - spying on the communication.
— Integrity - intercepting the communication and manipulating messages.

— Availability - destroying messages or modifying messages to cause one of the parties to

cease communication.

¢ Domain Name System (DNS) Tunneling - DNS tunneling is a technique that uses the DNS
protocol to transmit other types of data. Typically, DNS traffic is not blocked by network firewalls,
allowing attackers to exploit this method to exfiltrate data from systems or establish remote control

over them [33].

¢ Malware - The term "malware” describes a wide range of malicious software, such as ran-
somware, worms, trojans, spyware, bots, rootkits, and viruses. These programs are made to fulfill
the harmful goal of attackers who seek to obtain sensitive personal data without authorization, in-
terfere with system functions, and access computer systems and networks. Malware can also lead
to overwhelm processes and affect system performance. Spyware is a type of malware that hides
itself, steals important data from computers, and transmits it to attackers [34]. Ransomware is a
malware that has becoming very popular in recent years, it encrypts victim’s files and demands

that a ransom is paid for the file’s decryption.

* Phishing - The foundation of a phishing attack is social engineering, in which cybercriminals fab-
ricate a fake communication that seems authentic and originated from a reliable source. Attackers
deceive individuals into performing actions like installing malware, visiting a compromised website,
or disclosing login credentials in order to steal money, critical data, credit card info, etc. They ac-
complish this by sending seemingly harmless emails or texts and appealing for humans emotions

like fear and curiosity [35].

* Structured Query Language (SQL) Injection - In a SQL injection attack, the attacker attempts
to manipulate SQL statements used by a web application. This can succeed due to inadequate in-
put validation and incorrect SQL statement composition. Web applications frequently use database
systems to provide backend functionality. User input is frequently used to dynamically generate
SQL statements that communicate with databases in support of online applications. So, attack-

ers try to pervert the application’s original goal by sending SQL queries directly to the backend

18

database. The consequences of a successful SQL injection attack might be extensive, depending
on the online application and how it handles the data supplied by the attacker before constructing

a SQL statement [36].

* Zero-day Exploit - A zero-day exploit is a cyberattack method that capitalizes on an undisclosed
security flaw in computer software, hardware, or firmware. The term 'zero day’ indicates that the
vendor has zero days to address the flaw, allowing malicious actors to exploit it immediately before a
fix is available. This vulnerability may go unnoticed for an extended period until someone discovers
it, either security researchers or malicious hackers. Once identified, the vulnerability becomes
public knowledge, prompting a race between security professionals developing a fix and hackers

creating a zero-day exploit to exploit the vulnerability [37].

3.2 Attack Detection Systems

As previously highlighted, one of the biggest concerns in today’s world is cybersecurity owing to the in-
creasing amount of digital technology being integrated into society. Because of the interdependence and
reliance on digital infrastructures, cybersecurity is essential to the protection of information and systems.
Establishing robust mechanisms for the rapid detection and prevention of malicious activities is crucial as
cyber threats grow increasingly sophisticated. Putting in place efficient attack detection systems is the key
to solving cybersecurity issues.

Emphasizing the possible consequences of any malicious infiltration or attack on computers, informa-
tion systems, or network vulnerabilities is crucial. These kinds of events have the potential to trigger major
catastrophes and, more importantly, they are violate the fundamental principles of computer security pol-
icy, which are represented by the Confidentiality, Integrity, and Availability (CIA) [38]. Thus, these systems
are essential to maintaining these principles. This section explores the complex field of attack detection,
illuminating some widely adopted strategies.Given the abundance of research and information available

about Intrusion Detection Systems (IDS), these systems are emphasized throughout this section.

3.2.1 Intrusion Detection Systems

IDS become vital protectors in the never-ending war against cyberattacks, constantly searching for, evalu-
ating, and identifying unwanted activity occurring within information systems. The main objective of IDS
is to detect a range of security breaches, including external intrusions — attacks originating outside the

organization — and internal intrusions, which stem from threats within the organizational perimeter [39].

19

An IDS is an early warning system that combines various tools, techniques, and resources to identify
possible intrusions before they have a chance to compromise the security of critical system components
[40].

The creation of advanced IDS becomes more important as the digital environment changes and the
threat landscape gets more complex. The incorporation of ML techniques has been crucial in improving
intrusion detection capabilities in recent decades, enabling IDS to respond more effectively and adapt to
new cyber threats [41].

IDS can be divided in two major types, based on their scope of monitoring and the location at which

they operate within network:

¢ Host Intrusion Detection Systems (HIDS) - Specifically focused on the security of a single
host or device, it is a cybersecurity technique created to protect individual host computers by the
monitoring and analysis of file and process activity within their software environment [39]. HIDS
actively monitors incoming and outgoing traffic for a single host by living on it [42]. It seeks to detect
and alert of any unusual or malicious activity that can compromise the host machine’s availability,

integrity, or confidentiality.

* Network Intrusion Detection Systems (NIDS) - NIDS is a cybersecurity solution that constantly
monitors network traffic in order to detect and prevent intrusions [39]. It continuously processes and
examines the packets traveling across a certain network link while operating at specified locations
within a network architecture [43, 42]. NIDS improves network security by monitoring network

traffic and instantly identifying malicious activity and security issues.

3.2.2 Detection methodology

Detection methods can be broadly classified into three types: anomaly-based, misuse-based, and hybrid.
Each type of approach has its own advantages in detecting and combating security threats. Each one of

these methods will now be discussed.

Anomaly Detection

As defined in [39], the basic principle of anomaly-based cybersecurity solutions is modeling normal network
and system activity and identifying anomalies as deviations from established patterns. This strategy is
highly desirable, because it is effective in identifying zero-day attacks and provide a proactive defense

against unknown threats [40, 39].

20

Other advantages of this strategy are spotted by Buczak e Guven [39]: one is that typical activity
profiles can be adapted per system, per application, or per network, which makes difficult for attackers to
anticipate which actions might go unnoticed; other is that, the data that triggers alarms in anomaly-based
technigques— which are frequently linked to new attacks— can be utilized to establish signatures for misuse
detectors, thus improving the system/network security.

Although, a significant disadvantage is the possibility of high false alarm rates, as normal but until
undetected system behaviors could be mistakenly classified as anomalies [39].

Within the realm of anomaly detection, it can be divided in two types of analysis:

» Static Behavior Analysis: This kind of analysis relies on the idea that the system being monitored
has a static component that remains constant. Variations from the initial static configuration are
marked as errors, suggesting that an unauthorized party may have accessed or altered the system

[43].

¢ Dynamic Behavior Analysis: Dynamic anomaly detection utilizes audit records or monitored
network traffic data to adjust to alterations in dynamic system behavior. This method provides real-
time analysis of network traffic deviations from usual patterns by concentrating on events of interest

that are captured in audit logs [43].

The ongoing development of anomaly detection techniques is highlighted by recent developments,

such as the introduction of Al-based techniques that help distinguish anomalies in network traffic [44].

Misuse Detection

Misuse detection, also known as signature-based detection, is a cybersecurity technique designed that
uses relies on the use of predefined signatures or profiles associated with previously known attacks that
serve as reference points to identify and categorize potential threats based on recognized patterns [40].
This approach is especially effective at identifying known attack types without producing an excessive
amount of false alarms [39].

By comparing current activities to a database of known attack scenarios, the misuse detection oper-
ational principle enables the system to identify and flag actions that correspond with recognized attack
signatures. In this sense, the efficacy of misuse detection depends on a frequently updated database with
rules and signatures of known attacks, suggesting that manual updates are necessary on a regular basis

to keep the system up to date with the most recent threats [39].

21

The incapacity of misuse detection to identify new or zero-day attacks — those not included in its knowl-
edge base — is an obvious drawback. Misuse detection is excellent at quickly and precisely recognizing
existing attacks, but it has difficulty recognizing novel attack types that haven’t been previously analyzed.
Due to this limitation, it may not be possible to identify new threats that aren’t included in the signature
database [43, 40].

For example, the system may know the signature for a brute force password attack defined as "three
failed login attempts within five minutes” or the signature of a known DoS attack, however, any modifica-
tions to the brute force password attack or the DoS attack may go undetected, underscoring the method’s
reliance on predefined signatures for recognition [40, 44].

Table 1 synthesizes the major differences between anomaly detection and misuse detection.

Table 1: Comparison of anomaly and misuse detection.

Detection
Advantages Disadvantages
Method
e Able to identify unknown
¢ High false alarms
threats
* Hard to trace a normal behav-
. e Able to detect zero-day at-
Anomaly DeteC’[IOI’l ior proﬁle
tacks
¢ Needs initial training
e (Can create attack signatures
* Needs a database with at-
e Simple implementation tacks signatures
e Minimum false alarms e Constant update of the
Misuse DeteCtion database
» Better for detecting known at-
tacks e Unable to detect unknown
threats and zero-day attacks

22

Hybrid Detection

Cybersecurity hybrid techniques combine anomaly detection methods with misuse techniques to enhance
overall intrusion/attack detection. Their combined purposes are to lower False Positive Rate (FPR) asso-
ciated with unknown threats and increase the detection rates of known attacks. Hybrid strategies allow
a flexible defense against a variety of potential attacks by integrating the benefits of both approaches,

providing a complete and efficient cybersecurity solution [39].

3.2.3 ML-Based Detection

The number of applications handled by network nodes and the size of networks have significantly increased
in recent years, which creates enormous volumes of vital data that are exchanged throughout many nodes,
putting in risk both the data and the nodes. So, researchers underline the importance for automated
security techniques due to the dynamic nature of cyber threats [45]. Using ML technigues to identify new
and unknown cyber threats is one potential strategy. ML is a valuable tool for addressing the challenges
presented by modern cyber threats and an effective way to identify zero-day attacks due to its capacity to
learn from past events and adapt to evolving attacks [45, 46].

Traditional IDS, in spite of decades of improvement, continue to face ongoing challenges in improving
detection accuracy, reducing false alarm rates, and successfully recognizing new threats [47, 45].

One potential solution to get around the drawbacks of traditional IDS is to use ML techniques. With
its ability to accurately and automatically distinguish between normal and abnormal data, ML techniques
demonstrate a level of adaptability that is critical in the face of constantly changing cyber threats, and give
IDS the capacity to identify unknown attacks, acting as a proactive protection against new and developing
threats [47].

The capacity of ML:-based detection systems to continuously learn and adapt is one of their main ad-
vantages. These systems are capable of successfully recognize both known attack variants and completely
unidentified cyberthreats. This flexibility is especially important because attack frequency and sophistica-
tion are only going to rise.

Additionally, Khraisat et al. [41] highlights that ML:-based IDS are capable of independently identifying
trends and abnormalities in network traffic data, they help reduce the need for manual intervention. The
move towards automation not only simplifies the detection process but also makes it possible for security
systems to keep up with the volume of data generated and shared among network nodes.

Attack detection techniques are being revolutionized by ML, which provides increased speed, accuracy,

23

and flexibility while reducing the false alarm rate in response to evolving cyberthreats. With the rapid
advancement of technology and with the emergence of 6G, network security must incorporate ML for
strong defense against attacks.

Next, it will be described some of the ML algorithms and techniques that are being applied in the

context of attack detection.

Supervised Learning

In supervised learning, a model is trained using labeled data and then tested using unlabeled data. The
first steps in the process are gathering the dataset, dividing it into training and testing sets, preprocessing
the sets, extracting features, and then putting the model into an algorithm to train it to identify the features
linked to each label. After receiving test data, the model converts input data into output data based on
a sample of input-output pairings. In short, the ML algorithms that require external aid are known as
supervised algorithms [48]. There are two types of supervised learning: classification and regression.

Some of the most used supervised algorithms are:

¢ Decision Tree - A decision tree is a tree-shaped graphical representation of choices and their
outcomes [48]. The structure of the tree is composed of a root, decision nodes (representing a
feature), branches (the possible values for that attribute) and leaf nodes (final class - decision)
[49]. Decision trees are mostly used in ML for classification tasks; the decision process goes in
a sequential way from the root node to the leaf node, meanwhile features are evaluated and one
branch is selected [50, 51]. Decision trees are known for being easy to use, having a straightforward
prediction procedure, and being effective with unnormalized datasets [51]. However, this technique

has a high computational cost [49]. Figure 6 gives a graphical example of a decision tree.

24

Root Node

Branch
- ™
Decision Decision
Node Node
Terminal Terminal Terminal Terminal
Node Node Node Node
o J

Leaf Node

Figure 6: Graphical representation of Decision Tree algorithm.

e Support Vector Machine (SVM) [52, 49] - It is a method used for solving two-class problems,
where the data can be separated by a hyperplane defined by support vectors, they are crucial for
setting the boundary between the two classes. The space on either side of the hyperplane separating
the two classes is like a margin. The goal is to reduce generalization errors by maximizing this
margin, creating the widest possible distance between the separating hyperplane and the instances
on either side of it. A key component of SVM is its ability to employ a variety of kernels, including
Gaussian, Polynomial, and Linear ones. These kernels provide for flexibility in the mapping of
data into different feature spaces. Figure 7 gives a simple visual representation of how SVM works

separating two classes of data "A” and "B”, using a linear approach.

Figure 7. Graphical representation of SVM algorithm.

25

¢ Random Forest [53] - A Random Forest is an ensemble learning method used for classification
and regression tasks. It works by building multiple decision trees during training and merging their
results for a more accurate and stable prediction. The process begins with data sampling, where
random subsets of the training data are created using a method called bootstrapping. For each
subset, a decision tree is constructed. Unlike traditional decision trees, each node in these trees
considers a random subset of features when splitting the data. For classification tasks, each tree
votes for a class, and the most common class is chosen. For regression tasks, the average of
the predictions from all the trees is taken. Figure 8 provides a visual representation of how this

algorithm classifies a dataset instance.

SN IN O\
AANALAADL

l

{ Final Class - Class A

Figure 8: Graphical representation of Random Forest algorithm.

Unsupervised Learning

In unsupervised learning the machine simply receives inputs but it doesn’t obtains supervised target out-
puts [54], in other words data instances are unlabeled. When new data is introduced, the previously
learnt features are used to identify the data’s class [48]. A very used technique for this type of learning is

clustering, and a very used algorithm is K-means.

Deep Learning

As cyber threats get more complex, traditional ML techniques are becoming incapable to detect threats
and attacks efficiently [55]. ML methodologies have difficult to handle the increasing security concerns

due to the the introduction of new technologies, increased network traffic, and the production of large-scale

26

and multi-dimensional data, as well as the sophistication of attack scenarios [56]. This way, researchers
are exploring more and more the use of Deep Learning (DL) in these systems, to suppress the limitations
of traditional ML.

DL is a branch of ML and refers to a class of Artificial Neural Network (ANN) specifically designed to
handle large-scale and high-dimensional datasets effectively. With such data, classic ML techniques find
it difficult to retain efficacy and accuracy; in this situation, DL algorithms provide strong alternatives [57].

Put simply, ANNs are computational models that learn patterns and relationships within data by uti-
lizing interconnected layers of artificial neurons. These models are inspired by the form and operation of
biological neural networks [58]. Among many others, a widely used type of ANN is Convolutional Neural
Network (CNN). CNNs [59] are designed especially to analyze visual data, such as pictures. Its design imi-
tates the way the human visual system works by dividing images into smaller, easier to understand pieces
and teaching the user to recognize patterns within them. CNNs are capable of creating increasingly com-
plex representations of the visual world through the use of a technique called convolution, which involves
swiping small filters across the image to extract features like edges, shapes, and textures. This technique
allows CNNs to perform tasks like object recognition, image classification, and even image generation.

Figure 9 shows hows CNNs can classify an image.

e\ .e: e\
N
K W / AR { M
i i . YA W
Pixels of image fed as input) L "/A‘\\H///A‘\\HV

Input Layer Qutput Layer

Hidden Layers

Figure 9: CNN image classification representation [60].

3.2.4 Challenges

In this section, it will be examined the challenges that attack detection techniques encounter, focusing
on intrusion detection. These challenges highlight the complexity of this techniques, from handling False
Positive (FP) and False Negative (FN) to coping with the ever-changing nature of cyber threats. By address-
ing these issues, we can better understand the continuous work needed to strengthen defenses against a

constantly changing set of security threats.

27

3.2.4.1 False Alarm Rate

This kind of challenge is mainly seen in anomaly detection based systems, as previously referenced. It
happens because anomaly detection assumes that intrusive behavior is anomalous. It is reasonable to
expect that a significant portion of attacks would result in anomalous behavior. This method, however, has
the potential to mistakenly classify a lot of harmless behavior as malicious just because it deviates from
the norm.

Finding the ideal balance between FP and FN is essential to the efficacy of intrusion and attack de-
tection. FN happen when actual malicious activity is not detected, and FP happen when harmless activity
is inadvertently reported as malicious. To guarantee a trustworthy and accurate IDS, security administra-
tors frequently have to choose between reducing FP and FN [38]. The difficult part of system design is

minimizing both kinds of faults while taking high security precautions during implementation [61].

3.2.4.2 Resource Intensiveness

Keeping profiles that specify typical behavior for all relevant entities and resources—such as users, apps,
files, and systems—is essential for anomaly-based detection systems.

Adeleke [62] addresses the problem of computer overhead in intrusion/attacks detection, being a
problem that affects mainly systems based in anomaly detection. In the article it is explained that, in order
to compare recent activity sets with anticipated usage models, systems must also monitor current activity
and analyze it using appropriate algorithms, and have to undertake regular recalculations to generate new
models as usual behavior changes. Also, it is underlined that the majority of ML techniques for anomaly
detection are neural network-based, which have long processing times for the initial training set of data,
calling for enough processing and storage capacity. When balancing security and computational overhead,
designers must take into account variables such as the frequency of recomputation, computing and storage
capacity, and comparison time resolutions.

However, in order to keep all of the attack signatures, signature-based detection also requires a large
amount of storage capacity; the more signatures the system is aware of, the more effective it will be.

To give a specific example, IDS can be used to reduce attacks and threats in edge computing; however,
because edge nodes have limited resources (e.g., in terms of processing and storage capacity), it can be
difficult to allocate resources within an IDS in an effective and fair manner [63]. The increasing popularity of
edge computing, being one of the enabling technologies of 6G [13], highlights the importance of addressing
these issues and emphasizes the requirement for IDS solutions that are flexible enough to accommodate

the resource limitations that come with this computing paradigm, or in other systems.

28

3.2.4.3 Complexity in Network Environments

The growing number of devices connected to the internet emphasizes how important it is for detection
systems to handle data efficiently. As mentioned in earlier sections, 5G is capable of supporting a large
number of connected devices and services; as traffic volume increases, 6G will be even more capable of
supporting them. Thus, the issue of creating efficient and scalable solutions is made more challenging by
the constantly shifting network dynamics, which necessitate adaptive attack detection systems to counter
emerging intrusion and attack techniques [64].

In addressing the particular context of Internet of Things (loT) systems, for example, [65] highlights
the significant growth in devices as compared to traditional systems. Due to the constraints of current
centralized techniques, this surge requires scalable alternatives.

So, overcoming this challenge is very important to ensure that new strategies align with the intricate

demands of the new generation of networks, namely 5G and 6G.

3.2.4.4 Zero-Day Attacks

A common problem with signature-based detection is that it is difficult to identify previously unknown
attacks, which prevents it from identifying new threats. However, because new vulnerabilities and exploits
surface on a daily basis, a successful anomaly detection system needs to be able to adapt to unknown
attacks in order to be able to recognize threats without well-established signatures [64].

Although anomaly-based detection performs better at identifying zero-day attacks, it still struggles to
detect carefully planned zero-day attacks that fit into expected usage models [62].

IDSs’ ability to adapt is essential for effectively fighting against a constantly evolving variety of cyber-

security threats.

3.2.4.5 Privacy Concerns

In the realm of IDS, the issue of privacy becomes a critical concern for a long time. As outlined in [66],
when log files, often containing personal and sensitive information, are employed for auditing events, the
personal integrity of users is at risk.

In recent times, privacy legislation across the world has highlighted the importance of protecting cit-
izens' right to privacy, as clarified on in [67]. Several countries have passed legislation related to data
protection and privacy, such as the United States with HIPAA [68], the European Union with its data pro-
tection directive [69], and Canada with PIPEDEA [70]. These laws protect the privacy and confidentiality

of personal data, which emphasizes how important it is for IDS to comply to strict privacy standards in

29

order to uphold users’ rights and confidence.

3.3 Related Work

Once the theoretical foundations and concepts have been established, it is essential to investigate the
suggested approaches and technologies for attack detection. Several studies have presented novel tech-
niques designed especially for 5G and NS scenarios. Furthermore, a number of European projects have
promoted cooperation and innovation in the field of attack detection.

This section attempts to present some of the most recent attack detection systems that have been
proposed, with an emphasis on those that use ML to safeguard 5G networks, specially NS function. Addi-
tionally, emphasis will be placed on the DDoS detection systems.

Thantharate etal. [71] proposed a framework, Secure5G, for securing NS function in 5G. The proposed
framework is a NS model based on DL CNN and is intended to proactively identify and remove risks based
on incoming connections before they infiltrate the 5G core network. Detecting and mitigating DDoS attacks,
analyzing traffic patterns, predicting future traffic, allocating resources to the most suitable slice, and
identifying unauthorized operations via User Equipment (UE) are the goals of the framework. The model
can be used to forecast capacity and changes over time. Additionally, it maintains all of the original and
previous connection requests made by any device thanks to an integrated database of devices and user
habits from learning. They also introduce a new concept "Quarantine Slice”, as a form of attack mitigation,
consisting in a slice with bare minimum Quiality of Service (QoS) and strict requirements. Secure5G is an
extension of the DeepSlice [72] research work. The total performance was evaluated using volume-based
flooding and spoofing attack scenarios, and the detection accuracy was more than 98%. Some future work

will include the model training in real-time. The overview of this model is described in Figure 10.

30

eMBB Slice (High Throughput)
‘Mobile, Communication, Internet’

9@'\‘\‘@

mMTC (Low Throughput, High Density)
‘ToT & Smart Home, M2M*

Device Database
Malware/Botnets

!

URLLC (Ultra Reliable Low Latency) [

“ ‘Automotive, Medical & Industry 4.0°
T/ («) S ’ Quarantine Slice ‘Bare minimum QoS’

Black Hole Route (Termmate) /

%“\ / . Mvm} ------ o ——— VNFJ
Secured Slice Sﬁelemon Network

(()) Function Neural Model

—
i / (/ Internet/Service
. C Providers

~_ . S

User Equipment/Devices RAN Access Network Mobile Core and External IP Networks

Figure 10: Secure5G model overview [71].

The DeepSecure framework, proposed by Kuadey et al. [73] is represented in Figure 11. It is based
on Long Short Term Memory (LSTM) DL technique and includes models for slice prediction and attack
detection in 5G network slices. Based on LSTM, the attack detection model forecasts DDoS attacks from UE
network traffic, while the slice prediction model predicts suitable slices for authorised UEs. The Secure5G
[71], which was previously discussed, is quite similar to this framework. The CICDDoS 2019 [74] dataset
was utilized to evaluate the framework . Training parameters for the attack detection and slice prediction
models included learning rate, activation function, optimizer, and epochs. It's also crucial to highlight
that Python 3.8 and TensorFlow 2.4 were used in the framework’s implementation. That said, 99.970%

detection accuracy was achieved, surpassing the Secure5G framework.

31

e ———— -
Slice features of UEs

7w ke
4 WU
75 e/

Network Slices

i i

(2% Xy (& @]

Physical Infrastructure

Figure 11: DeepSecure framework overview [73].

A two-fold method was presented by Hussain et al. [75] to identify botnet attacks in loT environments.
A botnet attack consists of two stages: scanning activity in the beginning and DDoS at the end. Two models
are employed in this study: one to identify scanning activity and the other to identify DDoS attacks. Figure
12 gives an overview of the proposed approach. But, the focus here will be to explore the proposed model
for DDoS attack detection. Four distinct datasets were used in the detection process, which employed the
RestNet-18 model: DDoSLab, a self-generated dataset, CICIDS-19 [74], CICIDS-17 [76], and Bot-loT [77].
Since the RestNet-18 model was created for picture classification, the authors suggested converting the
three datasets into 15 x 15 x 1 greyscale images. Additionally, the authors altered a few of the model’s
hyperparameters, including the learning rate, batch size, and epochs. The four models that were produced
by using the four datasets to train the RestNet-18 were then compared. The model with highest result was

the one trained and tested with the Bot-loT [77] dataset, achieving an accuracy of 99.70% and a F1-score

of 99.59%.

32

1
2

DATA COLLECTION DATA PROCESSING FEATURE SELECTION ATTACK DETECTION QUTPUT

v 4
=
< /—\ - |
E = A . All Features gg % 2 e
b g l 4 ae
0o . . - =) S
4 E - E T} ¥ Features Selection — g 2w Scan
Z0 . : =2 Feature l Technique . Dg [
E a Extraction g? as
o Wireshark Network Scan Attack l = [i |
2] traces (.pcap files) Dataset Labelling Feature Set 1 o
(F$-1))
Normal
T | Scan
4 DDoS
/—w ’
4 (=]
v A All Features r oA h 8
oz — A r TR
<0] =2 N
= = " L T =71 1320 3| Normal
Z0 Feature Features Selection S o V lormal
w - : . Technique " 4 =
g = Extraction r 4) g
ag Wireshark Network DDoS Attack 4 & b DDoS
a traces (.pcap files) Dataset Labellin Feature Set 2 -

(FS-2)

Figure 12: Approach to detect botnet attacks [75].

With an emphasis on DDoS attacks, Bousalem et al. [78] presented a 5G prototype for DL-based attack
detection and mitigation in sliced networks. This prototype was developed in the context of the European
project 5G-INSIGHT!, that seeks to develop cutting-edge security features in 5G and beyond Vehicle To
Everything (V2X) slicing, from attack detection to attack mitigation. This prototype makes use of a CNN-
based DL model, which is implemented with Lightweight, Usable CNN in DDoS Detection (LUCID) [79], a
"practical, lightweight DL DDoS detection solution” that classifies traffic flows as benign or malicious based
on CNN features. Isolating malicious users inside a sinkhole-type slice with limited physical resources is
how attacks are mitigated. Furthermore, according to the authors, the prototype can achieve an accuracy
of nearly 97%.

Within the European project ASTRID?, the aim was creating a cyber-security framework specifically
for virtualized services. A DDoS detector component was created inside the complexity of this framework
with the purpose of detecting DDoS attacks, as the name suggests, using conventional ML techniques.
Sanchez et al. [80] conducted a study, in the scope of this project, to determine which ML algorithm
was more effective in detecting DDoS attacks. They also used an exhaustive hyperparameter search to
maximize their detection capacity. The datasets used were: ISCXIDS(2012) [81], CICIDS-17 [76] CSE-
CIC-IDS (2018) [76] and CICIDD0S2019 [74]. The outcomes demonstrated that, using the most recent
dataset, the Random Forest algorithm was able to achieve up to 99% detection accuracy. Additionally, the
model’s accuracy levels were compared to those of several DL techniques in this study.

Table 2 summarizes all the studies addressed in this section, highlighting the algorithm used, if the

https://bg-insight.eu/
https://www.astrid-project.eu/

33

https://5g-insight.eu/
https://www.astrid-project.eu/

proposed solutions were developed or tested for the NS environment, the performance metrics, a small

description and the used dataset.

Table 2: Related work summary.

Network Performance
Framework | Algorithm Description Dataset
Slicing Metric
Identifies and
neutralizes
SecurebG Detection Custom
CNN v volume-based
[71] Accuracy 98% Dataset
flooding and
spoofing attacks.
Detection Predicts slices and
DeepSecure Accuracy 99.97% detects DDoS CICDD0S2019
LSTM v
[73] & F1-score attacks within 5G [74]
99.96% networks.
It identifies the two
Detection
stages of a botnet Custom
Two-fold Accuracy 99.70%
RestNet-18 X attack (scaning and Dataset
method [75] & F1-score
DDoS), in loT (DDoSLab)
99.59%
environments.
Designed for
Detection detecting and
5G Prototype Custom
LUCID [79] v Accuracy 97% & mitigating DDoS
[78] Dataset
FPR <4% attacks within V2X
slices.
Detection
Developed to detect
DDoS Random Accuracy 99.98% CICDDoS2019
X DDoS attacks in
detector [80] Forest & F1-score [74]
virtualized services.
99.99%

34

Chapter 4

Architecture

This chapter provides a comprehensive overview of the architectural design of the developed system. It is
structured into three main sections.

The first section introduces the SDA component, the primary focus of this dissertation. This section
outlines the SDA’s primary responsibilities. It also discusses the key design properties.

Following this, a contextualization of the project where the SDA component is situated, is given.

Finally, the third section contextualizes the reader with the ZSM architecture. This foundation is crucial,
as it outlines the principles and framework within which the developed system operates.

Ultimately, this chapter aims to equip readers with a thorough understanding of the architectural design

of the developed component and its critical contributions to enhancing cybersecurity measures.

4.1 Component Architecture

The SDA component serves as the analytical engine within the system where it's inserted, tasked with
converting raw network data—such as packets crossing the network—into actionable insights. Its primary
functions include detecting patterns, anomalies, and potential threats, as well as generating alerts when
suspicious activities are identified. By leveraging ML as a sophisticated analytical technique, the SDA
enhances ability of the system where it is integrated, to proactively respond to cybersecurity threats.

Its core features and responsibilities include:

* Proactive Analysis: The SDA can spot possible dangers before they result in damage by exam-
ining current data. This can be achieved by detecting patterns and trends in the data which can
be indicators of consistent threats or system behaviors that need to be kept in check (such as a

system vulnerability). Al/ML algorithms are used to detect complex patterns.

¢ Anomaly Detection: It is responsible for detecting anomalies — unusual behaviors or data points

35

that deviate from the norm and can indicate potential security threats. This may include any actions
such as unauthorized access, suspicious network traffic, malicious user activity, and more. ML

methods will be employed to find anomalies.

e ML Models Ensemble: The SDA also offers an ensemble approach for the detection and pre-
diction of anomalies. This combines the use of multiple ML models to enhance the robustness and

accuracy of the system.

* Data Visualization: To aid operators and other components of the system understand the security
landscape, the SDA offers visual representations of data, highlighting key insights, threats and
patterns in realtime. This shall speed up any particular action that is required to be performed

manually in the system.

* Security Report Generation: It is important to create security reports regularly, to document,
communicate and analyse the security state of the system, so the SDA generates some security
reports. These reports can become important documentation for legal purposes. Also, they can

detail information about security incidents, giving information about causes and impact.

This component can be divided into modules or sub-components, that are described in Table 3. Figure

13 shows a simplified view of the architecture of the SDA component.

Main Process

N N ([\

Data Processing & mmlp- Anomaly Detection —p Threat Classification

Transformation Engine Module
Engine

AN J J _‘_/
‘) N [D

0 Real-Time Analytics

< Alert Module >

Reporting Module & Stream Processing

X X /

Feedback &
Optimization Engine

SDA

Figure 13: SDA's architecture.

36

Table 3: SDA modules description.

Modules

Purpose

Key Features

Interfaces

Data Processing &
Transformation

Engine

Prepares or reconstructs

the gathered data.

- Broker consumer

Input: Collected Data
from Security Data
Collection component.
Output: Analytics-ready
data.

Anomaly Detection

Detects anomalies in

- Statistical Analysis

Input: Analytics-ready
data.

- DL Models Output: Identified
Engine data.
- Alerts anomalies, insights or
alerts.
Input: Detected
Threat Classification | Classifies the kind of the | - ML Model Threats.

Module

detected threat.

- Classification

Output: Classified
Threats.

Real-time Analytics &

Stream Processing

It enables insights to be
visualized on dashboards
and facilitates data

processing capabilities.

- Stream Process
Engine
- Real-time

Dashboards

Input: Real-time
insights and analyzed
streams

Output: Dashboards

and processed data.

Sends alerts to the

- Real-time alert

Input: Processed data.

Alert Module Security Decision
- Alert Generation Output: Alerts.
component.
Input: Analytical results
Prepares analysed data | - Automated Report and insights.
Reporting Module
to generate reports. Generation Output: Reports and
processed data.
It validates the Input: Test data.
Feedback & - Model performance

Optimization Engine

performance of the ML

models.

checking

Output: ML models

performance.

37

4.1.1 Attack Detection Approach

Another noteworthy aspect of this component is the selected ML model for threat detection. A DL approach,
known as LUCID [79], has been chosen for this purpose. LUCID, based on CNNS, is specifically designed
to detect DDoS attacks. Choosing a model specific for detecting DDoS attacks is suitable because the test
case proposed for this project will only involve DDoS attacks.

Developed as part of various European projects and used in many others, as stated in section 3.3,
LUCID has proven to be an ideal choice for the project’s objectives. Besides its proven high accuracy in
detecting DDoS attacks, its architecture is suitable for deployment in resource-constrained environments,
making it appropriate for edge computing scenarios, where devices possess limited computing capabilities.
This aligns well with the scenario where this project will be implemented.

Also, this model seamlessly integrates traffic analysis functionality, streamlining dataset preparation,
model training, and testing processes, making it easy to prepare and integrate within other systems.

The LUCID system operates through a series of interconnected functions and components designed

to efficiently detect DDoS attacks in network traffic:

* Network Traffic Preprocessing: LUCID employs a preprocessing method for network traffic,
which involves several key steps. Firstly, the algorithm extracts 11 attributes from each packet within
a predefined time window. The packets belonging to the same bi-directional flow are then grouped
together in chronological order, forming an array of shape [n, f], where n is the maximum number
of packets collected for each flow within the time window, and f is the number of features. Each
attribute value is normalized to a [0, 1] scale, and the samples are zero-padded to ensure a fixed
length, which is necessary for input to a CNN. Finally, each example is labeled based on its flow
identifier. This last step is applicable only during the training or testing phase, where a labeled

dataset is used. In online detection, labels are not applied.

This preprocessing method generates a spatial data representation that allows the CNN to effectively
learn the correlation between packets of the same flow, facilitating the identification of DDoS patterns

regardless of their temporal positioning.

* CNN Model Architecture: The LUCID architecture includes a CNN, as previously mentioned,

with several layers:

— Input Layer: Preprocesses network traffic into a 2-D matrix of packet features, facilitating the

CNN's understanding of packet correlations.

38

— Convolutional Layer: Applies convolutions to extract local features crucial for identifying DDoS

and benign flows.

— Max Pooling Layer: Down-samples input along the temporal dimension, reducing network

complexity.

— Classification Layer: Uses a sigmoid activation function to output the probability of a flow

being a malicious DDoS attack.

* Learning Procedure: During training, LUCID minimizes its cost function by iteratively updating
all the weights and biases contained within the model. This involves feeding the input data forward
through the network, calculating the error, and back-propagating this error until convergence is
reached. The model uses a binary cross-entropy cost function to calculate the error over a batch of
samples, ensuring that it learns the correct feature representations from the patterns in the traffic

flows.

¢ Hyper-Parameter Tuning: LUCID employs a grid search strategy to explore the set of hyper-
parameters using the F1 score as the performance metric. This process optimizes the model’s

accuracy by influencing the model’s complexity and learning process.

* Kernel Activation Analysis: LUCID utilizes a kernel activation analysis technique to interpret and
explain the features to which the model attaches importance when making a DDoS classification.

This analysis provides insights into the significance of different features in the detection process.

Building upon the architecture and functions described earlier, the model’s operational performance
is demonstrated through the results showcased below, highlighting its efficacy, specially in a in resource-
constrained environment.

The authors of this model performed some tests to evaluate the model’s overall performance. The
obtained results demonstrate its high performance and robustness across various test datasets. The
model’s accuracy in classifying unseen traffic flows as benign or malicious showcases consistently high
performance across different test sets, as indicated by the high values of Accuracy, Precision, Recall, and
F1-score. For example, the model achieved an F1-score of 0.9889 on the ISCX2012 dataset, 0.9966 on
the CIC2017 dataset, and 0.9987 on the CSECIC2018 dataset, demonstrating its effectiveness in detecting
DDosS attacks.

In comparison with other models, LUCID's performance was comparable to or outperformed them.

Additionally, LUCID exhibited significantly faster detection time compared to those approaches, it was

39

capable to process 55000 samples per second. Another important aspect to mention is the training time,
even without using a Graphics Processing Unit (GPU), the time was around 2 hours, which surpass other
existent approaches.

In summary, the results affirm the LUCID model’s effectiveness, robustness, and efficiency in detect-
ing DDoS attacks across various datasets, making it a promising solution for environments with limited
resources, such as edges. Combining streamlined network traffic preprocessing, a CNN-based architec-
ture, iterative learning, hyper-parameter optimization, and kernel activation analysis, the LUCID system

emerges as a potent defense against DDoS threats and a great choice to integrate this system.

4.1.2 Threat Classification Approach

To enhance the system'’s robustness, a ML approach was selected to classify detected threats. Specifically,
this ML model was designed to identify various types of DDoS attacks. This insight is crucial for the
mitigation function, which relies on accurate and timely alerts to respond effectively.

Unlike the model used for initial attack detection, which was adapted from third-party sources, this
model was designed from the ground up. lts primary objective is to leverage the packet feature extraction
performed by the initial model, significantly reducing the system'’s processing time, as feature extraction
is typically a slow process.

Key architectural details include:

¢ Model Architecture: The Random Forest model developed for this project is designed for multi-
class classification. This architecture uses an ensemble of decision trees, where each tree is con-
structed independently using different subsets of the data and features. It can classify 12 types
of DDoS attacks: DNS attack, SynFlood, UDPLag, WebDDoS, TFTP attack, MSSQL attack, LDAP
attack, NetBios attack, NTP attack, SSDP, SNMP attack and UDP Flood.

* Learning Procedure: A Random Forest Classifier is initialized with a fixed random state to ensure
reproducibility. The training procedure involves fitting multiple decision trees on various subsets of
the data, enabling the ensemble to capture a wide range of patterns and relationships within the

data.

* Hyperparameter Tuning: The model employs Grid Search with cross-validation to determine
the optimal hyperparameters. The best model is selected based on the highest accuracy score,

ensuring the most effective performance.

40

This approach not only enhances the system’s robustness but also ensures efficient processing, al-
lowing for quicker and more accurate threat classification. This is critical in maintaining the security and

reliability of the system in the face of DDoS attack strategies.

41

4.2 Overall System Architecture

The SDA component is inserted in the 6G-OPENSEC-SECURITY project. Which architecture can be found

in Figure 14. This Figure also highlights the direct alignment of this architecture with the overarching ZSM

framework, which will be discussed in the following section.

{ E2E Security SLA& Policies (SSLA&P) #"Security Closed-loop Governance (SCLG) ™ 6G Network Slicing
i — i Security Manager
SSLA Security Policy Closed-loop Closed-loop ¥ 9
Manager Manager Manager Coordinator
A - &
: ESec:urltyr Closed-loop Automation (SCLA) Security & Privacy | |
1 E2E Network Slicing) . Securlty D data service
i |security Orchestrator (NSS0)| i i S e R
| i Decision Analytics collection
Y X A
(SSLAsecurity & Trust Fabric 0
A 'y 4r F
W Provider AT "'JF“'ﬁFci\}ia'e'r'.'a' u 7T T Provider A |, W Provider A |

RAN
-=======- |Controller

Security Probes

Within this framework,

distinct components:

' i ! | Domain NSSO
i RAN E
 |Controller (| 3]

{[Domain NssO i
+ | [Oreh: T Biovider BT

‘'omain

i [Domain NSsO i
' —- T e -
“.‘ ! r Provider B

SSLA&P ||

~Provider B,

;” Domain NSSO i : Domaml‘_—
. | Oeh— T Provider 8, 1| [BeR— T

i 7 | Demain NSSO g I ; | Domain NSSO [| Domain NSSO
: i = : :
| ramport [M [Bl
1 = + P
Controller ; T Domain)| | Controller : D TR HE Controller i S Id
L — o |Transport|| (Sg) AZP |1 — Edge SSLA&P |: ¢ —) lou
. S Py L S P1 ' Se Pi i
---I--E?#--‘: Controller E _“_@ Controller eI ESS < _u_r!t_v__l. Controller !
' ' g i
ISecurity Probes £ k ISecurity Probes

14: Framework for the 6G-OPENSEC-SECURITY project.

as depicted in Figure 13, one crucial element is the SCLA, comprising four

Security Decision - responsible for determining mitigation actions for detected threats, based on

policies and Service Level Agreements.

SDA - responsible for detecting threats, leveraging ML mechanisms.
Security Data Collection - collects network traffic and data.

Security & Privacy Data Service - acts as the database of the SCLA.

Notably, among these components is SDA, the primary focus of this dissertation.

42

4.3 ZSM Architecture

As previously mentioned, the architecture of this project is founded on the ZSM! framework specified by
ETSI. Specifically, it is rooted in the ETSI GS ZSM 002 [82] specification.

The ZSM architecture addresses the increasing complexity of networks and services, particularly in
5G and beyond environments. This architecture automates network functions and services, focusing on
security, privacy, and integrity. ZSM'’s framework allows for autonomous solutions across network opera-
tions, including planning, delivery, deployment, provisioning, monitoring, and optimization—all completed

automatically without human intervention [83]. Figure 15 shows the architecture diagram of ZSM.

| T Tp— i

' E2E Service Management Domain

Management Functions

Domain Integration Fabric

...

I I |
E2E Orchestration E2E Intelligence E2E Analytics E2E Data Collection

Cross-domain Integration Fabric

Domain Domain Domain Domain Domain
Control Orchestration Intelligence Analytics Data Collection

o

| Cross-domain |
| Data Services |

-4

—————

Physical -~ Virtual

Legend

Offered set I Consumed set Closed loo
of Z5M services of Z5M services e

Figure 15: ZSM framework reference architecture [82].

One of the fundamental aspects of this framework is the Closed-Loop Automation (CLA), specified in

[84, 85], playing an essential role in ensuring stability, efficiency, and security of operations. CLA stands

1 https://www.etsi.org/technologies/zero-touch-network-service-management

43

https://www.etsi.org/technologies/zero-touch-network-service-management

out as a powerful tool in real-time threat detection and mitigation. CLA’s continuous monitoring and evalu-
ation process automatically detects both known threats, such as DDoS and MITM attacks, and addresses
emerging and unknown threats. This capability is augmented by the use of ML and Al techniques, enabling
an adaptive and proactive response to threats.

In addition to threat detection and mitigation, CLA plays a crucial role in ensuring network stability
and efficient coordination of autonomous functions. By introducing preventive measures and coordinating
operations simultaneously, CLA contributes to more efficient and reliable automation

For readers interested in delving deeper into this topic, they can consult the specifications provided by
the ETSI, accessible on the committee’s page?.

However, it's essential to highlight that Closed-Loop Automation has an important data analytics func-
tion, crucial for attack/threat detection, where relies the work documented in this dissertation.

In summary, the ZSM architecture provides a comprehensive framework that supports the autonomous
functioning of network management services and is the base architecture to the 6G-OPENSEC-SECURITY

project.

2 https://wuw.etsi.org/committee/1431-zsm

44

https://www.etsi.org/committee/1431-zsm

Chapter 5

Implementation

This chapter details all of the implementation process for the SDA component, the focus of this dissertation.

The first section of this chapter provides a detailed explanation of the selected technologies, libraries,
and tools that best meet the system’s objectives.

After that, the focus shifts to training the ML models. Key activities included algorithm selection,
defining model architectures, and optimizing parameters. Additionally, preparing the dataset was a crucial
step in the process.

Then, the implementation of the model is described. Each module was designed to perform distinct
tasks aligned with the overall objectives of the component.

Lastly, the testing procedures that were crucial to validate the functionality and performance of the
SDA component ae described. This included unit testing of individual modules and integration testing to

verify seamless interaction between external components.

5.1 Technologies and Tools

In this project, a variety of technologies and tools were employed to ensure efficient development, system
robustness, and simplified maintenance. The technological choices were based on criteria of efficiency,
compatibility, and ease of use, ensuring that the project met the proposed requirements and objectives.
In this section, it is presented the core technologies and tools that were essential for the development
and deployment of the project. These include the programming languages, development environments,
version control systems, database management systems, messaging platforms, containerization technolo-
gies, and tools for network traffic analysis and ML. The following subsections provide detailed descriptions

of these technologies and their specific contributions to the project.

45

5.1.1 Core Technologies

The core technologies that form the backbone of the project are:

¢ Python 3.10: The primary programming language used for the project’s development. Python
was chosen for its simplicity, versatility, and wide range of libraries and frameworks that support

diverse applications, including ML.

Figure 16: Python programming language logo. (Python)

* PostgreSQL: Used to manage and communicate with the Security & Privacy Data Service database.
PostgreSQL was chosen for its robustness, scalability, and support for advanced data types, ensur-

ing efficient and secure data management.

PostgreSQL

Figure 17: PostgreSQL database managing system logo. (PostgreSQL)

¢ Apache Kafka: A distributed event streaming platform used as a message broker. Kafka facili-
tated efficient and independent communication between microservices, supporting real-time data
processing in a scalable and fault-tolerant manner. It was used to facilitate external communication
between the SDA and other components, as well as to enable communication within the modules

of the SDA.

46

https://www.python.org
https://www.postgresql.org/

&8 kaifka

Figure 18: Apache Kafka message broker logo. (Apache Kafka)

¢ Docker: Used to containerize the SDA, aiding in deployment and maintenance, ensuring consis-
tency across development, testing, and production environments. Docker also allowed the use of
environment files containing specific configurations, simplifying the management of environment
variables and secret configurations without altering the source code, enhancing security and ease

of application management.

Figure 19: Docker logo. (Docker)

¢ TensorFlow: An open-source ML library developed by Google. TensorFlow provided tools for
building and training DL models, fundamental to the project’s ML tasks. TensorFlow’s flexibility and

scalability make it suitable for ML and DL tasks in this context. The version used was the 2.8.0.
p
TensorFlow

Figure 20: TensorFlow library logo. (TensorFLow)

¢ GitHub: It is a web-based platform designed primarily for version control using Git. It allows

hosting, managing, and code reviewing. GitHub facilitates version control. In addition, GitHub

47

https://kafka.apache.org/
https://www.docker.com/
https://www.tensorflow.org

supports Continuous Integration/Continuous Delivery (CI/CD) workflows. this way, GitHub was
utilized to store the code, facilitating versioning throughout the development process and also as a

Cl/CD tool.

Figure 21: GitHub plataform logo. (GitHub)

* Tshark: Tshark is a network protocol analyzer and a command-line version of Wireshark. It captures
and interprets network traffic in real-time, providing insights into network performance and issues.
Tshark supports a wide range of protocols and offers various filtering options to focus on specific
types of traffic. It can save captured data for later analysis and is commonly used for troubleshooting
network problems, monitoring network activity, and conducting security audits. This way, it was used

to analyze the incoming traffic. (T-shark)

5.1.2 Libraries and Frameworks

In addition to the aforementioned technologies, several Python libraries and frameworks were utilized to

implement various functionalities within the project. The most relevant libraries and frameworks include:

Flask-SQLAIchemy: An extension that integrates SQL databases seamlessly with Flask applications,

providing an Object-Relational Mapping layer for interacting with the database using Python objects.

e psycopg?-binary: A PostgreSQL adapter that allows direct interaction with PostgreSQL databases,

supporting SQL commands, connection management, and transaction handling.

¢ kafka-python: A library for interacting with Apache Kafka, enabling message production and con-

sumption from Kafka topics for realtime data processing.

¢ pyshark: A wrapper for Tshark that facilitates programmatic capture and analysis of network traffic.

48

https://github.com/
https://www.wireshark.org/docs/man-pages/tshark.html
https://flask-sqlalchemy.readthedocs.io/en/3.1.x/
https://pypi.org/project/psycopg2-binary/
https://kafka-python.readthedocs.io/en/master/
https://pypi.org/project/pyshark/

e scikeras: A library that integrates Keras with scikit-learn, allowing Keras models to be used as

estimators in scikit-learn pipelines.

e scikit-learn: A ML library offering algorithms for classification, regression, clustering, and dimen-

sionality reduction, along with tools for data preprocessing and model evaluation.

e numpy: Itis a fundamental library for numerical computing in Python. It provides support for large,
multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate

on these arrays.

e pandas: It is an open-source data analysis and manipulation library for Python. It provides data
structures like DataFrames and Series that are designed to handle structured data intuitively and

efficiently.

¢ Dash: A framework for building interactive dashboards and analytical web applications with rich

data visualization components.

e Unittes: Itis a Python builtin framework for creating, organizing, and running tests. It was used to

perform unit tests.

5.2 Models Training

In this section, it will be covered all procedures related to training the ML models. First, a description
about the dataset used for training the models, the CIC-DD0oS2019 [74], will be provided. Next, it will be
explained how the dataset was processed and how the training phase was executed for each model.

As mentioned in section 4.1, two ML models were utilized in this project. For attack detection, it was
selected a DL approach, LUCID [79], specifically designed to detect DDoS attacks. For attack classification,

it was developed a Random Forest model.

5.2.1 Dataset description

As previously mentioned, the dataset used to train the models was the CIC-DD0S2019 [74]. Developed by
the Canadian Institute of Cybersecurity, this dataset addresses the limitations of existing DDoS datasets,
offering a comprehensive and reliable resource for testing and validating DDoS attack detection systems.
It was created to provide a realistic and up-to-date dataset that includes complete traffic, attack diversity,

and realism, which were often lacking in previous datasets.

49

https://pypi.org/project/scikeras/
https://scikit-learn.org/stable/
https://numpy.org/
https://pandas.pydata.org/
 https://dash.plotly.com/
 https://docs.python.org/3/library/unittest.html

Some of the key features of the CIC-DD0S2019 dataset are:

¢ Realism: The dataset contains real network traffic data, including both benign and malicious traffic,

making it suitable for testing the performance of IDS in real-world scenarios.

¢ Comprehensive Attack Coverage: It includes a diverse set of DDoS attack techniques from the

transport and application layers.

¢ Labeled Data: Each flow in the dataset is fully labeled as either benign or associated with a specific

type of DDoS attack.

* Feature-Rich: The dataset includes 80 network traffic features extracted using the CICFlowMeter!

software, a flow-based feature extractor.

¢ Public Availability: The dataset is publicly available, in the Canadian Institute of Cybersecurity web-

site 2.

Figure 22 illustrates the attacks covered in this dataset.

‘ DDoS Attacks ‘

I

Reflection Exploitation
Attacks Attacks
UDe
TCP/UDP
based attacks based
attacks

I D.\s| LDAPI.\HBIOS[SNMP |901mm|

L 1L 1
m |Charanl NTP [TP | [S\'Nﬂood] | UDP Flood | |UDPvLag]

Figure 22: DDoS Attacks proposed taxonomy [74].

The traffic generated for this dataset was produced in two days, the training day and the testing day.
This way there was produced two sets: the training set containing 12 types of DDoS attacks (NTP, DNS,
LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN flood, and TFTP) and the testing set

1
2

https://www.unb.ca/cic/research/applications.html

https://www.unb.ca/cic/datasets/ddos-2019.html

50

https://www.unb.ca/cic/research/applications.html
https://www.unb.ca/cic/datasets/ddos-2019.html

that includes 7 types of DDoS attacks (PortMap, NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, and SYN flood).
The attacks were executed at specific times during these days, and the network traffic was captured and
processed to create the dataset. Mixed with the attacks there is benign traffic, that it's produced using a
benign profile approach to simulate realistic benign user behaviors.

The generation of the dataset used a testbed consisting of two separate networks: the Attack-Network
and the Victim-Network. The Victim-Network simulated a typical network environment with a range of
common operating systems and network equipment, while the Attack-Network executed various DDoS
attacks against it.

The authors also conducted experiments using ML algorithms such as lterative Dichotomiser 3 (ID3),
Random Forest, Naive Bayes, and Logistic Regression to evaluate the dataset’s effectiveness in detecting
DDoS attacks. The results indicated that the ID3 algorithm performed the best in terms of execution time
and accuracy.

An important note is that the dataset is available in two formats: ".csv’ files with extracted features
and labels, and raw Packet Capture (PCAP) files containing the original network traffic. For this project,
the raw network traffic from the dataset was used.

Therefore, this dataset appeared to be an ideal fit for this project due to its comprehensive nature,
extensive volume of data, and up-to-date records of DDoS attacks. Moreover, its proven performance in
previous studies further validated its suitability. However, this dataset does not specifically contain 5G NS
traffic. Ideally, a dataset tailored to 5G NS traffic would be preferable for this study. Unfortunately, the
current literature lacks comprehensive and high-quality public datasets that meet these criteria. Conse-
quently, it was utilized this dataset with general DDoS traffic as the best available alternative. The training

set of this dataset was used to train the models, and the testing set was used when testing the system.

5.2.2 Attack Detection Model

To train the LUCID model developed by Doriguzzi-Corin et al. [79], a series of steps were undertaken.

Here is a detailed explanation of the procedures:

¢ Dataset Parsing and Feature Extraction: The initial step involves parsing the dataset to
extract features from the network traffic. This step transforms raw network data into a structured
format suitable for its usage in training the CNN. For this procedure was necessary to use the

pyshark library.

* Data Preprocessing: Several preprocessing actions are performed on the dataset:

o1

3
4
5

Balancing: The dataset was balanced to ensure an equal distribution of benign and malicious

traffic.

Splitting: The dataset was divided into three subsets: training, validation, and testing.

Normalization: Feature values were normalized to ensure they are within a consistent range.

Padding: Data padding was applied where necessary to ensure uniformity in feature lengths.

* Model Training: The processed dataset is then used to train the LUCID model. For this procedure,
was necessary the use of TensorFlow 2.8.0 and the scikeras library, section 5.1. already addressed

these technologies.

Also, the numpy library (see section 5.1.) was essential to handle and operate with the arrays of
samples.

These steps are executed by following the instructions provided in the GitHub repository® with the
source code of the model. While the initial steps were straightforward and could be accomplished by run-
ning the provided commands, minor modifications were made to the source code for clarity. The training
step required additional considerations and infrastructure setup, once it was executed on an Amazon Web

Services (AWS) t3.2xlarge instance using Kubernetes. Here’s how the training procedure was structured:

1. Create a Docker Image: A Docker image was created containing the necessary scripts and

dataset required for model training.

2. Publish the Docker Image: This image was published to Docker Hub, making it accessible for

the AWS instance to pull.

3. Create a Persistent Volume: A persistent volume was configured to save the training results.

This ensures that the data persists beyond the lifecycle of individual containers.

4. Deploy a Kubernetes Pod: A Kubernetes pod was created to host the training container. This

pod included the Docker image from step 2 and the persistent volume from step 3.

The deployment and volume configuration were managed using the Kubernetes command line tool,
kubectl #. After training, to retrieve the results stored in the persistent volume, an additional pod was
deployed containing an idle container, also attached to the persistent volume. Using kubectl®, the results

from the persistent volume were copied to a local folder.

https://github.com/doriguzzi/lucid-ddos
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/

52

https://github.com/doriguzzi/lucid-ddos
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/

This process ensured that the model training was efficiently managed and executed independently

within a cloud environment.

5.2.3 Threat Classification Model

Similar to the attack detection model, the initial step for the DDoS attack classification model involved
preparing and processing the dataset. This process was somewhat more complex compared to the LUCID

model.

* Step 1: Filtering Benign Traffic

First, all benign traffic needed to be filtered out from the dataset since this model focuses on
classifying types of DDoS attacks, requiring only malign traffic. This was accomplished using Tshark
tools (see section 5.1.) and a shell script that iteratively filtered the benign traffic of the PCAP files

in a directory, saving the processed files separately.

¢ Step 2: Separating Traffic by DDoS Attack Type

Once the malignant traffic was isolated, it was necessary to categorize it according to the type of
DDoS attack. This process was done manually. Using the start and end timestamps of each attack,
provided by the creators of the dataset, the PCAP files were grouped into different folders, each

named after the corresponding attack type.

¢ Step 3: Parsing, Feature Extraction, and Labeling

With the dataset separated and grouped, the next steps were to parse it, extract features, and
label it. The features extracted were identical to those used in the LUCID model. No additional
feature engineering was performed to determine the optimal features for the model. This decision
was driven by the need for low latency in real-time applications; feature extraction from network
traffic can be time-consuming. Since this model is intended to complement the LUCID model and
aiding in selecting appropriate mitigation actions, low latency was prioritized over potentially higher
accuracy. However, the LUCID model samples are in Three-Dimensional (3D) arrays, which is the
appropriate format for a CNN. Since now we are using a Random Forest model, the data needs to
be in Two-Dimensional (2D) format. To achieve this transformation, it is calculated the mean along
axis 1, effectively collapsing the rows within each layer into a single value for each column. For
labeling, each flow’s label was determined by the name of the folder containing the corresponding

PCAP file, which indicated the type of DDoS attack.

53

* Step 4: Dataset Processing

The processed dataset then underwent several steps:

Label Conversion: Labels were converted into numerical values, with each number corre-

sponding to a specific DDoS attack type.

Balancing: The dataset was balanced to ensure approximately equal numbers of flows for

each attack type.

Splitting: The dataset was divided into training, testing, and validation subsets.

Normalization and Padding: The flows were normalized and padded as necessary.

* Step 5: Model Training

Following the dataset processing, the training procedure was straightforward. Due to dataset bal-
ancing and the relatively small number of samples for certain DDoS attack types (e.g., Web DDoS),
the dataset was not large, leading to a less extensive training process. Consequently, the training
was conducted using the Google Colab environment to train the threat classification model, based

on a Random Forest. This was accomplished using the scikit-learn library

Also, the numpy library was essential to handle and operate with the arrays of samples.

This structured approach ensured that the dataset was prepared and processed, facilitating effective
training of the DDoS attack classification model. It's important to note that steps 3 and 4 were carried
out using two Python scripts, which were developed by adapting the dataset processing functions from the

LUCID model.

5.3 Implementation Details

As mentioned in section 4.1, the SDA component introduced in this dissertation comprises several mod-
ules, each with its own functionalities and responsibilities. These modules work together to fulfill the overall
purpose of the SDA. Figure 23 provides a visual representation of the interactions among these, as well
as the interactions with the external components present in the SCLA.

This section aims to provide a detailed account of the implementation of each module and how they

cooperate together.

54

SDA Internal Workflow

Alert
Module

Threat Classification
Module

Data Processing &
Transformation Engine

Anomaly
Detection Engine

Reporting

Security Data Module

Collection

Real-Time Analytics &
Stream Processing

) Feedback & . 8)
A o 0 Security & Privacy
Security pecision 0pt|m|zat:on Enlle Data S@rvice

par /' [Main process -Thrqit Detection]
| , Data Transfer
' % (PCAP Chunk)
| 2 Real-time Data
| 3 Detected Threats
—_— |
| 4 Classified Threats i
—_—— >

|_5 Processed Insights _|
e ———

| 6 Report |

! 7 Report |
—_—

L [If Threats]

| 8 Alert |

| 9 No action

par __/ [Periodic Model Testing]

| 10 Model Testing

alt / [IF Accuracy < Threshold]

|11 Alert

|12 No action

Security Decision Feedback & Security & Privacy
(@] Optimization Engine DBIBESEW'CQ

Alert
Module

Reporting
Module

Threat Classification
Module

Anomaly
Detection Engine

Security Data A
Collection Data Processing &

Real-Time Analytics &
Transformation Engine

Stream Processing

Figure 23: Internal workflow.

5.3.1 Message Broker

The communication between the SDA and other external components is facilitated via the Apache Kafka
message broker, as previously mentioned. This means that the SDA sometimes acts as a message pro-
ducer and other times as a message consumer.

In the communication with the Security Data Collection component, the SDA acts as a consumet,
subscribing to the topic ‘pcap_chunk’. In the communication with the Security Decision component, it
acts as a producer, sending messages to the ‘threats_alert’ and 'acc_alert’ topics.

Additionally, the broker is used internally for communication between the Data Processing & Trans-
formation Engine and the Anomaly Detection Engine. In this internal setup, the Data Processing & Trans-
formation Engine acts as a producer, producing the messages in the topic ‘anomaly_detection’, while
the Anomaly Detection Engine acts as a consumer. This design choice allows the system to receive and
process network traffic from the Security Data Collection more quickly than the time-consuming tasks
of detecting DDoS attacks, classifying them, and storing the results. This setup is important because it
naturally creates a queue, allowing network traffic to arrive at a higher rate than what is currently being
analyzed.

The broker implementations were done using the kafka-python library (see section 5.1.).

More details about these modules will be provided in the following subsections, ensuring a clearer

understanding of this process.

55

5.3.2 Data Processing & Transformation Engine

This module facilitates communication between the Security Data Collection component and the SDA
component. As detailed in previous sections, the Security Data Collection component is responsible for
forwarding network traffic, in PCAP file format, to the SDA for further analysis. This communication occurs
via a Kafka message broker. Due to broker message size limitations, the PCAP file is divided into chunks
before being sent. Consequently, this module is also responsible for reconstructing the PCAP file from
these chunks.

Here's a detailed explanation of the process:
1. Message Reception and Validation:

e When a message is received on the broker topic ‘pcap_chunk’, the first step is to validate the
message to ensure it contains all the necessary information for reconstruction. An example

of the expected chunk message is in the Appendix B.1.

* A chunk object is then created from the message.

2. Storing Chunks:
e The chunk object is stored in a dictionary, where the key is the PCAP identifier associated
with that chunk.
e Subsequent chunks are appended to the list of chunks under the same PCAP identifier.
3. Reconstruction and Cleanup:
¢ Once all chunks are received (identified by sequence numbers and the total number of
chunks), the file is reconstructed.
* The reconstructed file is saved in a specified folder within the container.

¢ The chunk object is then removed from memory, and the corresponding dictionary entry is

deleted.

* Finally, the path to the reconstructed PCAP file is sent via the message broker to the Anomaly
Detection Engine, in the topic ‘anomaly_detection’. An example of the message sent is
in the Appendix B.2. The value key is essential to identify the message, being the identifier

of the PCAP file, and it is part of the broker implementation.

56

For a better understanding of the PCAP file reconstruction process, refer to Figure 24, which presents

a flowchart of the procedure.

Start

Wait for
messages

4

Received
PCAP Chunk

Validate input

Create a Chunk

e » ohject

The
PCAPID
associated already
exists in the
dictionary?

Store the Chunk
object, creating a new
key-value pair for the

dictionary [PCAP ID
as key]

Append the Chunk
object to list in
dictionary ffrom the
same PCAP ID]

All the
Chunks were
received?

Sort the chunks by

sequence number

and write them in a
file

Romove chunk
object and delete
the dictionary entry

Send the PCAP file
path via broker

End

Figure 24: Flowchart of the Data Processing & Transformation Engine process.

57

5.3.3 Anomaly Detection Engine

This module plays a critical role in the system. It receives the path to the PCAP file via a message broker,
by the Data Processing & Transformation Engine, on the specific topic pcap.hunk.

The core function of this module, processing_pcap_file(), manages the entire process of ana-
lyzing the PCAP file to detect DDoS attacks and alerting the Security Decision component. This function
coordinates with other modules to execute these operations.

Upon receiving the message, the first task is to detect potential DDoS attacks using the pre-trained
LUCID model. The LUCID model’s source code was extensively modified to retain only the necessary parts,
making it more modular and user-friendly. This allows seamless function calls and a better integration with
the system. After detection, the function returns all flow identifiers, their predictions, the DDoS rate for the
PCAP file, and the prediction timestamp.

If a DDoS attack is detected, the Threat Classification Module is invoked to determine the type of DDoS
attack. This module also returns flow identifiers, prediction results, DDoS rate per type, and the prediction
timestamp.

The information from both detection and classification stages is then passed to the Real-Time Analytics
& Stream Processing component to generate a detailed threat report. This report is stored in the database
by the Reporting Module, which also updates relevant database entries. If threat reports are generated,
the Alert Module is triggered.

In case of any errors during this process, the system attempts processing up to three times. If pro-
cessing fails after three attempts, the PCAP file’s status is marked as error in the database, indicating the
need for further intervention outside this component’s scope.

This process is illustrated in the activity diagram in Figure 25.

58

Receive Path
to PCAP File

Call
processing_pcap_file()

Detect DDoS
Attack using
LUCID Model

[DDoS detected, DDoS not detected]

v

Invoke Threat Error Handling
Classification
Module

Y

Generate
Threat Report

y

Store Report in
Database

Trigger Alert
Module

[Errors Happened
[No Errors]

Retry Process (up
to 3 times)

[Failed after 3 attemps]
* [Succed before 3 attemps]

Mark PCAP file
status as error in
database

L

O

Figure 25: Activity Diagram of the Anomaly Detection Engine process.

59

5.3.4 Threat Classification Module

This module is responsible for classifying the type of DDoS attack detected. As mentioned in Section 4.1.2,
it can classify up to 12 different types of DDoS attacks and plays a crucial role in the system.

To accomplish this, the module first transforms the 3D data from the LUCID model into a 2D format
suitable for the Random Forest model. This transformation involves calculating the mean along axis 1,
collapsing the rows within each layer into single values for each column. Once transformed, the 2D data
is fed into the Random Forest model to make its predictions.

The module then returns several pieces of information:

Flow identifiers.

Predictions for each flow.

The DDoS rate for each type of attack.

The prediction timestamp.

5.3.5 Real-Time Analytics & Stream Processing

This module has two main functionalities: processing data collected from model predictions and the Feed-
back & Optimization Engine, and transforming it into suitable data objects for reporting, alert processes,
and display on a dashboard.

The module converts data into DataFrame format, facilitating better visualization and making it suitable
for display on the dashboard and manipulation by other modules. Specifically, the module creates five

DataFrames:

Results of DDoS detection and classification.

DDoS rate over time.

DDoS rate per type.

¢ Testing results of the LUCID model.

Testing results of the Random forest model.

Details of these Data Frames are provided in Appendix B.3.

60

When new data is added to the DataFrames, entries with timestamps older than 30 minutes are filtered
out, except for the DataFrame that stores testing results, which has a threshold of 1 hour. This prevents
the system’s memory from being overloaded with outdated data.

The key libraries for this processing functions were numpy and pandas. For the dashboard, the dash
library was essential. (see section 5.1.)

The dashboard is updated with these DataFrames and has features four tabs: DDoS Count, DDoS
Rate Over Time, DDoS Rate per Type, and Model Test Results.

1. DDoS Count: This tab includes a graphic and a dropdown menu with three options: Internet
Protocol (IP) Source, IP Destination, and Protocol. The graphic dynamically updates based on the

selected option:
e |P Source: Displays the count of DDoS flows by IP Source, with the X-axis representing the IP
sources and the Y-axis showing the number of DDoS flows detected.
* |P Destination: Similar to IP Source, but the X-axis represents the IP destinations.
* Protocol: Shows the count of DDoS flows by protocol encountered, with the X-axis representing

different protocols.

2. DDoS Rate Over Time: This tab presents a graphic showing the DDoS rate over time for an
analyzed PCAP file. The X-axis represents the timestamp, while the Y-axis displays the DDoS rate

on a scale from 0% to 100%.

3. DDoS Rate per Type: This tab features a graphic depicting the rate of different DDoS types in the
most recently analyzed PCAP file, with classes on the X-axis and their corresponding rates on the
Y-axis. Below the graphic is a table displaying details, including the class, rate, number of classified

flows, total number of flows, and detection timestamp.
4. Model Test Results: This tab contains two graphics:

e The first graphic shows metrics for the LUCID model, with timestamps on the X-axis and

metric values ranging from 0 to 1 on the Y-axis.

* The second graphic is similar but displays the results for the Random Forest model.

Figures 26 and 27 shows examples of two tabs of the dashboard, DDoS Count tab and DDoS Rate
tab.
The rest of the dashboard can be found in Appendix C.1.

61

DDoS attack detection

DDoS Count DDoS Rate Over Time DDoS Rate by Type Model Test Results

DDoS count by source_ip

1000

DDoS count
8
&

172.16.0.5 192.168.50.253 192.168.50.254 192.168.50.4 192.168.50.6 192.168.50.7 192.168.50.8 52.11.213.147 54.192.49.33

IP Source
IP Source
IP Destination

Protocol

Figure 26: Dash Tab for DDoS Count.

DDoS attack detection

DDoS Count DDoS Rate Over Time DDos$ Rate by Type Model Test Results

@ @

DDos rate over time

92

(Jul 8, 2024, 18:28:59.07, 91)
91 L2 DDoS Flow/Total Flows: 533
/586

90.5

DDOS rate (%)

90,
18:28:59.069 18:28:59.0695 18:28:59.07 18:28:59.0705 18:28:59.071
Jul 8,2024

Figure 27: Dash Tab for DDoS Rate.

5.3.6 Reporting Module

This module is responsible for updating the database tables. It stores threat reports and updates entries
related to the analyzed PCAP file in the database.

When storing threat reports, certain considerations are taken into account. Multiple flows identified
as DDoS attacks may share the same source IP address, destination IP address, protocol, and DDoS type.
In such cases, storing multiple reports with essentially the same information is unnecessary. Therefore,
the reports are grouped, and only one representative report is stored in the database.

Database interactions are direct, as the database is integrated into the system as a library. This allows

for straightforward function calls to perform necessary updates.

62

After storing the report, the returned result from the database is converted into JavaScript Object
Notation (JSON) format and returned, to be further sent to the Security Decision component, by the Alert
Module. Details of this data object can also be found in Appendix B.4

This module is essential for maintaining up-to-date database records.

5.3.7 Feedback & Optimization Engine

This module operates in parallel with the main process (detecting DDoS attacks). It is responsible for
continuously evaluating the effectiveness of the models. Every 10 minutes, it invokes a test function for
each model, using the test dataset obtained from the dataset processing described in Section 5.2. Various
metrics such as accuracy, F1-score, precision, and recall are then calculated and the Real-Time Analytics
& Stream Processing is called to display the metrics on the dashboard.

If the accuracy of a model falls below a certain threshold (85% for the LUCID model and 65% for
the Random Forest model), the Alert Module is called, and a message is sent to the Security Decision
component via a message broker (this will be addressed in section 5.3.8). In fact, one of two messages
can be sent, or even both one for each model.

Details of the data object of these messages can be found in Appendix B.5.

5.3.8 Alert Module

his module is responsible for sending alert messages to the Security Decision component via a message

broker. There are two types of alerts:

¢ Athreat report if any flow is detected as a DDoS attack.

¢ An alert about the accuracy of the models.

Each type of message is sent to a different topic: "threats_alert’ for threat reports and ‘acc_alert’
for accuracy alerts. Accuracy alerts can generate two types of messages, depending on the model being
monitored. These messages are identified by a key included in the message, which is an integral part of
the Kafka broker's implementation. Data objects sent on both of these topics can be found in Appendixes

B.4 and B.5, respectively.

63

5.4 Development Process

The development of this project began with the selection and training of appropriate DL and ML models
(section 5.2 addressed the models training process). Once the models were prepared and ready for
use, the next phase involved writing and developing the necessary code. Python 3.10 was chosen as the
programming language for its versatility and library support, while Visual Studio Code was utilized as the
code editor. Visual Studio Code has a great integration with GitHub, where the project’s code is stored.

GitHub plays a crucial role in this project, serving not only as a remote repository and version control
system but also as a Cl/CD tool. Through GitHub Actions, a powerful Cl/CD platform, it is possible to auto-
mate the build and testing processes. GitHub Actions enables the creation of workflows that automatically
build and test each pull request made to the repository.

Whenever a change is proposed, GitHub Actions triggers the deployment of a Docker container to
execute unit tests on the modified code, using the unittest library. This automated testing ensures that any
issues are identified and resolved before the changes are merged into the main branch. If the tests pass
without any issues, the changes are merged successfully. However, if any tests fail, the merge is blocked,
and the code must be revised and corrected before being resubmitted. This rigorous process maintains
the integrity and reliability of the project’s codebase.

Figure 28 gives a visual representation of this process.

In addition to the unit tests, integration tests were also performed. These tests were carried out
manually to ensure that the SDA component could effectively communicate with the external components.
The goal of these integration tests was to verify that the SDA could interact and function as intended with

all the other parts of the SCLA system.

5.4.1 Unit Tests

In this project, unit tests were designed to verify the functionality of specific functions and sections of code.
The main goal was to ensure that these sections produced the correct inputs and outputs and to check
the behavior of the code when errors occurred.

To test these code sections effectively, some modules and input data objects were mocked.

Due to the complexity of certain sections, such as the application of ML models, manual testing was
used. Additionally, modules interacting with the database of the SCLA were not tested within this scope.
However, functions responsible for input validation and data transformation were tested to confirm that

they produced the correct outputs.

64

O Container w

start

Continuous Unit Tests
integration tool

o unittest
Tests Failed?

Yes No

Push to a branch in
the repository Changé code

Merge changes
into main branch of

A repository
Code editing O

Figure 28: Development process with unitary tests.

The unit tests applied were:

For the Data Processing & Transformation Engine, it was tested if the network traffic in PCAP format

was reconstructed as expected.

¢ For the Feedback & Optimization Engine, we tested if all output data objects were constructed

correctly.

¢ For the Alert Module, it was tested if all output data objects were constructed correctly and inputted

into the message broker.

For the Realtime Analytics & Stream Processing, it was tested if all data objects were processed

and transformed as expected.

5.4.2 Integration Tests

The primary goal of the integration tests was to verify the integration of the SDA with the other components

of the SCLA.

65

6
7

To test the communication between the Security Data Collection and the SDA, which interact via a
Kafka message broker, the Security Data Collection was mocked using the Kafkacat ©, a Kafka Command
Line Interface (CLI) tool. Data that the SDA was expected to receive was input into the appropriate Kafka
topic, and any errors in the SDA were observed.

For testing the communication between the SDA and the database (Security & Privacy Data Service),
the process was straightforward. Since the database structure is installed in the SDA as a library, it allows
easy access to methods for populating tables. If the library is used incorrectly, it will naturally throw an
exception, indicating an issue.

Finally, to test the communication between the SDA and the Security Decision component, the mes-
sages sent by the SDA were monitored using a Kafka Graphical User Interface (GUI) 7 to ensure they were
transmitted as expected. This GUI allows to check all the topics belonging to the broker and the messages
sent to these topics. This also helps in checking all the communications that occur via broker. This GUI
as more functionalities, such as managing the topics, delete them, create new ones, etc., check which
broker nodes are active and much more. Images of this GUI and some of its functionalities can be seen

in Appendix D.1.

https://github.com/edenhill/kcat
https://hub.docker.com/r/tchiotludo/akhq

66

https://github.com/edenhill/kcat
https://hub.docker.com/r/tchiotludo/akhq

Chapter 6

Results and Discussion

In this chapter, it will be presented the the results from the developed system, focusing on two main areas.
First, it will be discussed the results obtained from training and testing the two ML models used in the
system. This includes an overview of the evaluation metrics and a detailed analysis of the performance of
each model. Following this, it will delve into the results of various experiments conducted with the SDA,
highlighting the practical implications and effectiveness of the system. Through this chapter, the aim is to

provide a clear understanding of the models’ capabilities and the system'’s overall performance.

6.1 Model’s Training and Testing

This section presents the results from training and testing the ML models used in the component. It
begins with a brief overview of the metrics employed for models evaluation, followed by the discussion of
the results. It is important to note that these tests were done to the models separately from the rest of the

component, so they don’t represent the performance of the component when all operational.

6.1.1 Models Evaluation Metrics

In order to ensure a full assessment of the ML models’ performance, a variety of metrics are typically
used. These metrics offer insights into numerous aspects of the model’s performance. Some of these
metrics are calculated using the measures True Positive (TP), True Negative (TN), FP, and FN. To evaluate

the performance of the employed models in this project, the used metrics were:

¢ Accuracy: Measures the proportion of correct predictions relative to the total predictions made by

the model.

Accuracy = TP+ TN (6.1)
Y TP TN FP+ PN |

¢ Precision: Indicates the proportion of TP relative to the total predicted positive results by the

67

model.
TP

TP +FP

Precision = (6.2)

Recall (or True Positive Rate (TPR)): Measures the proportion of TP relative to the total posi-

tives.
TP

Recall —
S = PN

(6.3)

F1-Score: A metric that combines precision and recall into a single measure, useful in situations

with imbalanced classes.

Precisi Recall
F1-Score = 2 x —oooon x 7eea (6.4)
Precision + Recall

Mean Squarred Error (MSE): Quantifies the average of the squares of the differences between

predicted and actual values.

n

1
MSE =~ (i — i)’ (6.5)

i=1

True Negative Rate (TNR): Indicates the proportion of TN relative to the total negatives.

TN
TNR = 6.6
TN+ FP (6.6
FPR: Indicates the proportion of FP relative to the total negatives.
FP
FPR = 6.7
TN+ FP (6.7)
False Negative Rate (FNR): Indicates the proportion of FN relative to the total positives.
FN
FNR = 6.8
TP +FN (6.8)

Area Under ROC Curve (AUC): A measure of how well the model can distinguish between two
classes, representing the probability that the model will rank a random positive instance higher

than a random negative instance.

1
AUC = / TPR(FPR™'(t))dt (6.9)
0

68

6.1.2 DDoS Detection Model

After parsing the dataset, we obtained a total of 2,446,546 instances, comprising 130,824 benign in-
stances and 2,315,722 DDoS instances. However, the dataset needed to be balanced due to the dispro-
portionate number of DDoS instances compared to benign ones. After balancing, the dataset contained a
total of 261,648 instances, evenly divided into 130,824 benign and 130,824 DDoS instances.

The dataset was then split into training, testing, and validation sets. 10% of the total instances was
allocated for the testing set. From the resulting 90% of the instances, 10% were allocated for the validation
set and rest for the training dataset. This resulted in 211,933 instances for training, 26,166 for testing,
and 23,549 for validation.

The LUCID model was trained on an AWS t3.2xlarge instance, which has the following specifications:
8 vCPUs (Intel Xeon Scalable Skylake, 3.1 GHz), 32.0 GiB of memory, and up to 5 Gbps of bandwidth.
The primary drawback of this instance is the absence of a GPU, which could expedite the training process
for DL models. Despite this, the training process was completed in about 2 hours without the use of a

GPU. The best hyper-parameters encountered during the training process were:

Batch Size: 2048

Dropout: None

Kernels: 32

¢ Learning Rate: 0.1

Regularization: None

After the training process, the validation set was used to confirm the model’s performance and the
obtained Accuracy was 0.9983 and the F1-score was 0.9984.
To ensure that the model has a great performance, the model was tested with the testing set, data

that the model had never seen. The results of all the tested metrics are presented in Table 4.

69

Table 4: LUCID Testing Model Results.

Metric Value
Accuracy | 0.9985
F1-Score 0.9985

TPR 0.9973
FPR 0.0003
TNR 0.9997
FNR 0.0027

Precision | 0.9997
Recall 0.9973
AUC 0.9985
MSE 0.0015

The number of tested samples was 26,166, with a prediction time of 0.109 seconds, which gives
approximately 240,055 samples per second. This is a fast prediction time, considering the test was
conducted on Google Colab with the default runtime.

As evidenced by the evaluation metrics, the model demonstrated great performance, not only in terms
of good predictions, but also in terms of processing time. All metrics achieved good values, indicating the
model’s high accuracy, precision, recall, and overall effectiveness. This evaluation confirms that the model

meets the desired standards for its application in this system.

6.1.3 Threat Classification Model

The first step was to parse the dataset. After parsing, the number of samples for training was relatively
small, with only 2,424 instances. Despite having a large number of DDoS samples (2,315,722), it was
necessary to balance the samples across different types of DDoS attacks, as some types had many samples
while others had very few, namely the WebDDoS type. Consequently, there were 202 samples for each
type of DDoS attack.

The dataset was then divided into training, testing, and validation sets, using the same logic as for the
LUCID model. This resulted in 1,962 instances for training, 243 for testing, and 219 for validation.

Four different algorithms were trained and tested before selecting Random Forest as the model to be
used in the system. The algorithms evaluated included Decision Tree, Random Forest, SVM, and CNN

models. Table 5 presents the results from the validation set and the optimal hyper-parameters identified

70

during training. All models were trained using the Google Colab environment with the default runtime.

Table 5: Models training and validation results.

F1-
Model Accuracy Hyper-parameters
Score
Criterion: entropy, Max Depth: 20, Max Features:
Decision Tree 0.7534 0.7497 None, Min Samples Leaf: 1, Min Samples Split: 5,

Splitter: best

Bootstrap: False, Max Depth: None, Max Features:
Random Forest 0.7580 0.7496 sqrt, Min Samples Leaf: 2, Min Samples Split: 5,
Number Estimators: 100

SVM 0.4384 0.3799 C: 100, Gamma: 1, Kernel: rbf

Batch Size: 2048, Dropout: None, Kernels: 32,

CNN 0.7077 0.7056
Learning Rate: 0.01, Regularization: None

As it is possible to see, the model with best performance was the Random Forest, achieving an
Accuracy and a F1-score of approximately 0.75, even though the performance of the Decision Tree was
very close.

To ensure the performance of the models, they were tested with the testing set and with more metrics.
The results are presented in Table 6. Additionally, the Receiver Operating Characteristic Curve (ROC) curve

graphs for each model and all classes can be found in Appendix A.1.

Table 6: Testing Models Results.

Metric Random Forest Decision Tree SsVM CNN
Accuracy 0.8436 0.8066 0.4486 0.8148
F1-Score 0.8364 0.8025 0.3766 0.8152
AUC 0.9798 0.9692 0.9187 0.9676
Precision 0.8367 0.8022 0.3649 0.8358
Recall 0.8436 0.8066 0.4486 0.8148
MSE 7.1852 9.0947 13.5885 6.7202

The Random Forest model demonstrates the highest overall performance. During the testing phase,

it achieved the highest accuracy (0.8436), F1-score (0.8364), and AUC (0.9798).

71

The Decision Tree model also performs well, with a testing accuracy of 0.8066 and an F1-score of
0.8025.

The CNN model exhibits better performance in the testing phase than in the training phase, with
a testing accuracy of 0.8148 and an F1-score of 0.8152. Additionally, the CNN has the lowest MSE at
6.7202, indicating better prediction accuracy in terms of numerical error.

In contrast, SYM model performs poorly compared to the other models. It has the lowest accuracy
(0.4486) and F1-score (0.3766) during testing, and the highest MSE (13.5885), suggesting that it struggles
significantly with this classification task. This indicates that the SVM is not be suitable for this particular
problem.

In summary, the Random Forest model is the best performer, followed by the Decision Tree and CNN
models, which also show strong results. The SYM model, however, does not perform well and may require
re-evaluation or further tuning.

However, the metrics for the best model, Random Forest, are not exceptionally high. The achieved
Accuracy and F1-score do not exceed 85%. Several factors can explain these results. Firstly, the number
of samples is low, which can affect the model’s learning capacity. Secondly, some types of attacks are very
similar to others, leading to misclassifications when the model doesn’t have enough samples to distinguish
them accurately.

For a clearer understanding, Table 7 presents the values of Precision, Recall, and F1-Score for each
class, obtained during the testing phase for the Random Forest model.

Based on the Table 7, the Random Forest model demonstrates varying performance across different
classes of attacks. For classes such as Syn Flood, TFTP, and MSSQL, the model achieves perfect precision,
recall, and F1-scores (1.00), indicating effectiveness in correctly identifying these attacks. The LDAP class
also shows high performance with metrics close to 1.00.

For Web DDoS, NetBios, and NTP attacks, the model maintains relatively high precision and recall
values, resulting in F1-scores around 0.96, which indicates good but not perfect performance. The DNS
class has perfect precision but a recall of 0.87, leading to an F1-score of 0.93, suggesting that while the
model accurately identifies DNS attacks, it misses 13% of them.

However, the model's performance drops significantly for classes such as UDP Lag, SSDP, and UDP
Flood, with precision, recall, and F1-scores ranging from 0.15 to 0.45. This indicates substantial difficulties
in correctly classifying these attacks. Particularly, the UDP Lag class has a low precision of 0.25 and a
very low recall of 0.11, resulting in a poor F1l-score of 0.15. This means that while the model correctly

identifies some UDP Lag attacks, it misses 89% of actual instances.

72

Class Precision | Recall | F1-Score | Support

DNS-0 1.00 0.87 0.93 15
Syn Flood - 1 1.00 1.00 1.00 16
UDP Lag- 2 0.25 0.11 0.15 18
Web DDoS - 3 0.92 1.00 0.96 23
TFTP -4 1.00 1.00 1.00 18
MSSQL - 5 0.95 1.00 0.97 19
LDAP - 6 1.00 0.96 0.98 24
NetBios - 7 0.93 1.00 0.96 26
NTP - 8 1.00 0.92 0.96 26
SSDP -9 0.39 0.47 0.42 15
SNMP - 10 0.96 1.00 0.98 24
UDP Flood - 11 0.40 0.53 0.45 19

Table 7: Precision, Recall, F1-Score, and Support for Each Class

Key insights reveal that the model shows high precision but low recall for certain classes, indicating
a conservative prediction approach that leads to many missed instances. Balanced performance is ob-
served in classes like Web DDoS, LDAP, and NTP. The model struggles with specific attacks, likely due to
insufficient training data or the inherent similarity of these attacks.

Another factor contributing to poor classification is that the samples inputed in this model have the
same features as the ones inputed in the LUCID model, as already described in section 5.2.3, this will
helps prioritize latency over good model’s performance.

Nevertheless, the lack of higher Accuracy and F1-score in this model is not a significant concern. The
LUCID model already demonstrates great performance by identifying nearly all DDoS attacks. This model

serves primarily as an additional tool to assist the decision-making process to mitigate the attack.

6.2 System Evaluation and Testing

This section aims to document various tests conducted to evaluate the overall component, working inte-
grally. Initially, it will cover precision and efficiency tests to assess the performance of the ML models
when incorporated in the component. Following that, it will examine the system’s overall performance.

Finally, it will evaluate the system'’s resilience. Also, a discussion of the results will be encountered.

73

1

The PCAP files encountered in CICDD0S2019 [74] dataset (testing set), were also used in this testing
phase, due to the lack of trustworthy data available. However, other sources of traffic were employed. The
objective was to test the model using 5G NS traffic, but suitable public datasets are limited. Nonetheless,
Khan et al. [86] developed a dataset called SliceSecure, which includes various types of DDoS attack
traffic in the NS environment. Although the publicly available portion on the author’s GitLab ! contains
only a few examples, it is still useful for testing the system. Additionally, benign examples from the dataset
developed by Coldwell et al. [87], which features 5G traffic, were used. Some captures available in [88]

were also utilized.

6.2.1 Precision and Efficacy

The primary focus is on assessing the capability on the entire system, specifically the LUCID model, to
differentiate between malicious and benign traffic. Subsequently, the efficacy of the Random Forest model
in distinguishing between various types of DDoS attacks was evaluated. Due to the difficulty in obtaining
diverse traffic samples for all the addressed types of DDoS attacks, only the ones in the testing set of the
CICDD0S2019 [74] dataset were tested.

It is important to note that all the tests done here were done to the all system, using PCAP files.
The traffic was carefully selected and inputed in the system with prior knowledge of the type of traffic it
represents.

First, the efficacy of the system to identify benign flows was tested using traffic samples from the
Coldwell et al. [87] dataset, which is from a UE in a 5G network, and the SliceSecure [86] dataset from
two network slices.

Table 8 shows the obtained results for the benign traffic classification, including the source of the
traffic, the TP, TN, FP, and FN flows, the total number of flows, the classified type of DDoS if applicable,
and the DDoS rate. As shown, the system performed well in identifying benign traffic. However, it is
evident that some flows were misclassified as malicious, specifically with the Syn Flood DDoS type. This
misclassification can be attributed to certain communications that resemble a Syn Flood attack due to the
high quantity of SYN-ACK packets.

Then, the efficacy of the system to identify DDoS flows was tested, focusing on how these flows were
classified in terms of the type of DDoS. The testing set from the CICDD0oS2019 [74] dataset and some
samples of DDoS attacks found in [88] were used. Table 9 presents the obtained results, including the

source of the traffic, the DDoS type to be tested, the TP, TN, FP, and FN flows, the total number of flows,

https://gitlab.com/sajidkhan382067/ddos-data-sets-2022

74

https://gitlab.com/sajidkhan382067/ddos-data-sets-2022

Source | TP | TN FP | FN | Total flows | Classified Type DDoS | DDoS Rate (%)
[87] 0 18 0 0 18 N/A 0
[86] 0 | 17895 | 647 | O 18542 Syn Flood 35
[86] 0 | 35165 |420| O 35585 Syn Flood 1.2

Table 8: Results for benign flows classification.

the classified type of DDoS, and the DDoS rate. Due to limitations of the dataset and finding trustworthy
examples of specific types of DDoS attacks, the tests were only performed on NetBios, LDAP, MSSQL, UDP
Flood, Syn Flood, and NTP DDoS attacks.

The classification results indicate high accuracy for most DDoS types, with detection rates nearing
100% for NetBios, LDAP, MSSQL, UDP Flood, and Syn Flood attacks. However, the NTP DDoS shows
a significantly lower detection rate of 83.19%, suggesting challenges in accurately classifying NTP flows
compared to other DDoS types. This discrepancy may occur because the signature of the attack sample
used for this test might differ slightly from the one the model was trained with. For the other tested types,
the signature is likely similar to those in the training set, as these samples are from the same author.
The breakdown of classified types within each category highlights the presence of misclassifications and
overlaps. This is especially notable in the case of NTP, where a substantial portion of the flows were
classified as other types. Also, in the case of the UDP Flood, where more than half of the flows were
classified as SSDP. This may happen because both UDP Flood and SSDP attacks utilize the UDP protocol,
which does not have built-in mechanisms for establishing a connection or ensuring delivery. This similarity
can make it difficult for some classification algorithms to distinguish between different types of UDP-based
attacks.

After conducting all these tests, it is evident that the system can correctly classify benign and malicious
traffic flows. However, the training set should be more extensive to include a broader range of signatures
for different DDoS types, thereby improving the model’s accuracy. While the results for classifying the
types of DDoS attacks are as expected, they could be further enhanced by utilizing a larger and more

diverse training dataset.

6.2.2 Performance

To evaluate the system’s performance, two metrics were assessed: scalability and latency. Scalability

was measured by inputting a large volume of data, and observing the system'’s response. Latency was

75

Type Total Classified Type | DDoS Rate
Source TP [TN | FP | FN
DDoS flows DDoS (%)
NetBios - 9013
[74] NetBios | 9984 | O 0 9 9993 DNS - 357 99.99
Others - 623
LDAP - 2171
SNMP - 19
[74] LDAP 2207 | O 0 1 2208 99.99
DNS - 10
Others - 10
MSSQL - 9216
[74] MSSQL | 9697 | O 0 11 9708 SNMP - 286 99.88
Others - 206
SSDP - 5490
UDP
[74] 9193 | O 0 9 9202 UDP Flood - 3519 99.99
FLood
UDP Lag- 193
Syn
[74] 7111 | O 0 | 104 7215 Syn Flood - 7111 98.55
FLood
NTP - 189
[88] NTP 485 0 0 | 98 583 83.19
Others - 394

Table 9: Results for malicious flows classification.

measured to determine the time required for the system to process a PCAP file and classify the flows.

Regarding the scalability of the system, it was observed that PCAP files with large amounts of flows
and data—specifically, files over 20 MB—failed to be processed. The container exited with error code 137,
indicating insufficient RAM, as the flows are stored in memory until classified. It is important to consider
the hardware used for these tests: a Dell Latitude 5510 laptop with 16GB of RAM, and the maximum RAM
that the container can use is 8GB. However, the containerized environment utilizes only a fraction of the
available RAM, which explain this problem. It is anticipated that better resources will be available where
the system is ultimately implemented, mitigating this issue. Nevertheless, as expected, processing smaller
amounts of data at a time would be more efficient.

The latency was tested using the PCAP files already used to test the precision and efficacy of the

system. So, it was measured the time since the PCAP is received until all the reports are generated and

76

sent. Table 10 presents the results obtained including the size of the PCAP file, the total number of flows,
the number of identified DDoS flows and benign flows and the time of processing.

Table 10 presents the relationship between traffic type, processing time for PCAP files, and the number
of flows. The data analysis reveals a trend of increasing processing time as the number of flows increases.

For instance, processing times exceeding 300 seconds are associated with benign traffic containing
35,585 flows, whereas shorter times, such as 38.99 seconds, correspond to smaller flow quantities, like
2,208 in the case of LDAP traffic. It's also notable the variation in processing time for different traffic types
with similar flow quantities. For example, the Syn Flood has a bigger processing time than the NetBios,
MSSQL and UDP Flood that have more flows, this may happens because the Syn Flood is based on TCP
packets which require more processing given the nature of the protocol. The other types of traffic are
based on UDP packets.

The system shows efficiency in handling smaller flow quantities, as evidenced by the shorter process-
ing times for LDAP. However, there is room for improvement, especially in enhancing consistency and

reducing processing times for larger data volumes.

Traffic Type | Time (s) | Number of flows
Benign 157.62 18542
Benign 303.26 35585
NetBios 56.15 9993

LDAP 38.99 2208
MSSQL 61.82 9708
UDP Flood 63.95 9202
Syn Flood 64.09 7215

Table 10: Processing time and quantity of flows.

In summary, the system demonstrates the capability to process various types of network traffic, but
the required time increases as the number of flows grows. Improvements in the processing algorithm
or underlying infrastructure could reduce processing times for large flow quantities, thereby increasing
system efficiency and also the scalability of the system. It is important to note that the hardware used in

these tests is limited and the system can achieve better results with more resources

77

6.2.3 Resilience

To test resilience, different signatures of DDoS attacks not included in the training dataset were input into
the models to evaluate their ability to correctly classify these new attack signatures. This helps determine
if the system can adapt to and detect new attacks. However, it is expected that the classification of the
type of DDoS attack may fail since the model was developed to classify 12 specific types of DDoS attacks.
Therefore, if the attack is not among these 12, the classification will naturally be incorrect.

For this evaluation, traffic samples from various DDoS attacks were used:

BACnet Protocol Attack: Typically used in loT environments, this attack was chosen to see if

the system could handle protocols outside the standard set.

¢ SYN-ACK Reflection Attack: Unlike a SYN flood attack, this involves the attacker sending SYN
packets to a server with the victim’s IP, causing the server to respond with SYN-ACK packets to the

victim, resulting in traffic overflow.

* Flood of Fragmented UDP Packets: This tests the system’s ability to manage fragmented

packets, which can be challenging to classify.

* Flood of IPv4 Packets with Random Protocols: This scenario evaluates the system’s capa-

bility to handle a variety of unknown protocols.

These tests are crucial for assessing the system's flexibility and robustness in detecting DDoS attack types
beyond the ones it was specifically trained to recognize.

Table 11 presents the results of the conducted tests. The system had difficulty identifying most types
of attacks. While it was able to detect a flood of fragmented UDP packets, it incorrectly classified these
flows as Syn Flood, which is a very different type of attack.

With further refinement and training, the system could enhance its accuracy and adaptability, leading
to more reliable detection of a wider range of DDoS attacks. These findings provide valuable insights for
future development, suggesting that with targeted improvements, the system can become more robust

and effective in identifying novel attack vectors.

78

Total Classified DDoS Rate
Source | TypeDDoS | TP | TN | FP | FN
flows Type DDoS (%)
[88] BACnet 2345 | 0O 0 | 5926 8271 LDAP 28.35
Syn ACK
[88] 0 0 0 | 7673 7673 N/A 0.00
reflection
Fragmented
[88] 84 0 0 9 93 Syn Flood 90.32
UDP packets
LDAP - 2
[88] IPv4 3 0 0 | 17201 17204 0.017
DNS-1

Table 11: Results for unknown malicious flows classification.

79

Chapter 7

Conclusions and future work

This chapter presents the conclusions drawn from the developed work and outlines perspectives for fu-
ture research and development. It summarizes key findings and suggests potential directions for further

investigation.

7.1 Conclusions

This project aimed to develop a system capable of autonomously detecting and classifying DDoS attacks
using ML and DL mechanisms. The objective was to construct a system following the ZSM architecture
principles [84, 85]. Additionally, this system was designed to integrate into a larger framework: the SCLA,
which itself operates within a Security Manager to ensure the security of network slices in a 6G network
environment.

Initially, a study was conducted to survey other systems or projects, either already developed or on-
going, in this context. It was found that the scientific community is actively researching the enhancement
of security using ML and DL techniques. Several studies employed ML and DL to detect DDoS and other
attacks in the 5G and NS environments. However, none of these systems were designed with ZSM prin-
ciples in mind, nor were they part of an SCLA system. Furthermore, they only distinguish between DDoS
and benign traffic and they don't classify the type of DDoS attack.

Thus, the focus was to develop a system capable of detecting various kinds of DDoS attacks using a
CNN and classifying their types with good accuracy. This system was designed to introduce low latency and
generate security reports to aid the mitigation function in addressing the attacks. Additionally, the system
provides a dashboard summarizing the network'’s security status and continuously evaluates various model
metrics to ensure optimal operation.

During the development of this project, several challenges were encountered, such as selecting an

appropriate dataset. The literature lacks a robust public dataset containing DDoS samples in the 5G NS

80

environment. Therefore, the CICDD0S2019 dataset [74] was chosen despite not containing 5G NS traffic,
due to its other good characteristics. Another challenge was training the models. For the CNN-based
LUCID model, using a GPU would expedite this process; however, the training process was relatively quick
even using a CPU. For the Random Forest model, the limited size of the training dataset compromised
the model’s learning process. During the testing phase, it was anticipated that the model would be imple-
mented and tested in the network, but this was not possible at the time of writing this dissertation.

The need to use mechanisms that ensure the proper development of this system—such as documen-
tation, integration and unit testing, as well as the adoption of new technologies and tools, and the nature
of the system itself—increased the complexity of this project. Even so, all the decisions made took into
account the available resources and the project’s needs.

Finally, it can be considered that all objectives were achieved. The system performs well in detecting
DDoS attacks, and the classification of DDoS types provides valuable insights for the mitigation function to
adapt accordingly. The system is fully operational and integrated with external systems, ready for testing
in a real 5G NS environment. It is expected that this system will serve as a solid foundation for enhancing

security in 6G open networks.

7.2 Prospect for future work

In order to further enhance the capabilities and robustness of the system, several directions for future work
are proposed. Firstly, it will be essential to deploy and test the system in real 5G NS environments to validate
its efficacy and performance. This real-world testing will provide insights into the system’s behavior under
various network conditions and allows to fine-tune it accordingly. This will help in extending the system
to meet the needs of emerging 6G networks, ensuring that the system remains relevant and effective as
network technologies evolve.

Currently, the dataset used for training and evaluating our models consists of standard DDoS traffic
rather than traffic specific to 5G NS. While a dataset that includes 5G NS traffic would be ideal for achieving
a readier system to be inserted in this specific domain, there is a notable gap in the literature, as no
high-quality dataset with these characteristics is readily available. Addressing this limitation is crucial for
enhancing the accuracy and relevance of the system in the context of 5G networks. As such, future work
will involve the creation or acquisition of a more suitable dataset and the subsequent re-training of the
models with this data.

Given the dynamic nature of network traffic and attack patterns, developing methods for automatic

81

retraining will be crucial. This will ensure that the system adapts continuously to new threats and remains
up-to-date without requiring manual intervention.

Moreover, the current system classifies only 12 types of DDoS attacks, which is a limitation. To address
this, there is a need to generalize the DDoS type classification and train the model with a more extensive
and diverse dataset. This expansion will enhance the system’s ability to detect and classify a broader
range of attack types. Through these steps, it is possible to create a more adaptable, accurate, and

comprehensive system capable of addressing the evolving challenges in 5G and 6G networks security.

82

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

L. Bonati et al. “Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road
Ahead”. In: Computer Networks (2020). DOI: 10.1016/j . comnet.2020.107516.

V. Ziegler et al. “Security and Trust in the 6G Era”. In: IEEE Access (2021). DOI: 10 . 1109/
ACCESS.2021.3120143.

C. J. Bernardos and M. A. Uusitalo. European Vision for the 6G Network Ecosystem. June 7, 2021.
DOIl: 10.5281/ZENODO.5007671.

S. H. A. Kazmi et al. “Security Concepts in Emerging 6G Communication: Threats, Countermea-
sures, Authentication Techniques and Research Directions”. In: Symmetry (2023).

J. Cunha et al. “Enhancing Network Slicing Security: Machine Learning, Software-Defined Network-
ing, and Network Functions Virtualization-Driven Strategies”. In: Future Internet 16.7 (2024). DOI:
10.3390/£116070226.

P. Alemany et al. “Security and Trust in Open and Disaggregated 6G networks”. In: 2024 24th Inter-
national Conference on Transparent Optical Networks (ICTON). 2024.DOI: 10.1109/ICTON62926.
2024 .10647935.

M. M. d. Silva and J. Guerreiro. “On the 5G and Beyond”. In: Applied Sciences (Jan. 2020). DOI:
10.3390/app10207091.

L. Chettriand R. Bera. “A Comprehensive Survey on Internet of Things (loT) Toward 5G Wireless Sys-
tems”. In: IEEE Internet of Things Journal (Jan. 2020). DOI: 10.1109/JI0T.2019.2948888.

H. Fourati, R. Maaloul, and L. Fourati. “A survey of 5G network systems: challenges and machine
learning approaches”. In: International Journal of Machine Learning and Cybernetics 12 (). DOI:
10.1007/s13042-020-01178-4.

P. Hedman. Description of Network Slicing Concept. Tech. rep. NGMN Alliance, Jan. 2016.
ETSI. 5G. URL: https://www.etsi.org/technologies/5g (visited on 12/29/2023).

J. Ordonez-Lucena et al. “Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and
Challenges”. In: IEEE Communications Magazine (May 2017). DOI: 10 . 1109 /MCOM . 2017 .
1600935.

X. You et al. “Towards 6G wireless communication networks: vision, enabling technologies, and
new paradigm shifts”. In: Science China Information Sciences (Nov. 24, 2020). DOI: 10. 1007/
s11432-020-2955-6.

. Afolabi et al. “Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies,
and Solutions”. In: IEEE Communications Surveys & Tutorials (2018). DOI: 10.1109/COMST .
2018.2815638.

A. A. Barakabitze et al. “5G network slicing using SDN and NFV: A survey of taxonomy, architectures
and future challenges”. In: Computer Networks (Feb. 2020), p. 106984. DOI: 10 . 1016/ .
comnet.2019.106984.

83

https://doi.org/10.1016/j.comnet.2020.107516
https://doi.org/10.1109/ACCESS.2021.3120143
https://doi.org/10.1109/ACCESS.2021.3120143
https://doi.org/10.5281/ZENODO.5007671
https://doi.org/10.3390/fi16070226
https://doi.org/10.1109/ICTON62926.2024.10647935
https://doi.org/10.1109/ICTON62926.2024.10647935
https://doi.org/10.3390/app10207091
https://doi.org/10.1109/JIOT.2019.2948888
https://doi.org/10.1007/s13042-020-01178-4
https://www.etsi.org/technologies/5g
https://doi.org/10.1109/MCOM.2017.1600935
https://doi.org/10.1109/MCOM.2017.1600935
https://doi.org/10.1007/s11432-020-2955-6
https://doi.org/10.1007/s11432-020-2955-6
https://doi.org/10.1109/COMST.2018.2815638
https://doi.org/10.1109/COMST.2018.2815638
https://doi.org/10.1016/j.comnet.2019.106984
https://doi.org/10.1016/j.comnet.2019.106984

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Giordani et al. “Toward 6G Networks: Use Cases and Technologies”. In: IEEE Communications
Magazine (Mar. 2020). DOI: 10.1109/MCOM.001.1900411.

M. Z. Chowdhury et al. “6G Wireless Communication Systems: Applications, Requirements, Tech-
nologies, Challenges, and Research Directions”. In: IEEE Open Journal of the Communications
Society (2020). DOI: 10.1109/0JCOMS . 2020.3010270.

E. C. Strinati et al. “Reconfigurable, Intelligent, and Sustainable Wireless Environments for 6G Smart
Connectivity”. In: IEEE Communications Magazine (Oct. 2021). DOIl: 10 . 1109 /MCOM . 001 .
2100070.

W. Jiang et al. “The Road Towards 6G: A Comprehensive Survey”. In: [EEE Open Journal of the
Communications Society (2021). DOI: 10.1109/0JCOMS . 2021.3057679.

L. U. Khan et al. “6G Wireless Systems: A Vision, Architectural Elements, and Future Directions”.
In: IEEE Access (2020). DOI: 10.1109/ACCESS.2020.3015289.

P. Porambage et al. “The Roadmap to 6G Security and Privacy”. In: IEEE Open Journal of the
Communications Society (May 2, 2021). DOI: 10.1109/0JCOMS.2021.3078081.

M. Ylianttila et al. “6G white paper : research challenges for trust, security and privacy”. In: (June 30,
2020).

S. J. Nawaz et al. “Quantum Machine Learning for 6G Communication Networks: State-of-the-Art
and Vision for the Future”. In: IEEE Access (2019). DOI: 10.1109/ACCESS.2019.2909490.

Y. Zhou et al. “Service-aware 6G: An intelligent and open network based on the convergence of
communication, computing and caching”. In: Digital Communications and Networks (Aug. 1, 2020).
DOI: 10.1016/j.dcan.2020.05.003.

A. Imanbayev et al. “Research of Machine Learning Algorithms for the Development of Intrusion
Detection Systems in 5G Mobile Networks and Beyond”. In: Sensors (Jan. 2022). DOI: 10.3390/
§22249957.

Y. Siriwardhana et al. “Al and 6G Security: Opportunities and Challenges”. In: 2021 Joint European
Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). |IEEE, June 8,
2021. DOI: 10.1109/EuCNC/6GSummit51104.2021.9482503.

U. GOV. Understanding vulnerabilities. URL: https://www.ncsc.gov.uk/information/
understanding-vulnerabilities (visited on 11/27/2023).

Rhebo. Glossary | Industrial anomaly detection explained. en. Jan. 2019. URL: https://rhebo.
com/en/service/glossar/anomaly-detection-en/ (visited on 11/27/2023).

Cisco. What Is a Cyberattack? - Most Common Types. en. URL: https://www.cisco.com/c/
en/us/products/security/common-cyberattacks.html (visited on 11/27/2023).

MITRE. Denial of Service, Technique T0814 - ICS | MITRE ATT&CK®. URL: https://attack.
mitre.org/techniques/T0814/ (visited on 11/28/2023).

“A Survey of Defense Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks”.
In: IEEE Communications Surveys & Tutorials (2013). DOI: 10.1109/SURV.2013.031413.
00127.

M. Conti, N. Dragoni, and V. Lesyk. “A Survey of Man In The Middle Attacks”. In: [EEE Communi-
cations Surveys & Tutorials (2016). DOI: 10.1109/C0OMST.2016.2548426.

Cisco. DNS Tunneling. Cisco Umbrella. URL: https : //learn-cloudsecurity . cisco.
com/umbrella-resources/umbrella/dns-tunneling (visited on 12/07/2023).

84

https://doi.org/10.1109/MCOM.001.1900411
https://doi.org/10.1109/OJCOMS.2020.3010270
https://doi.org/10.1109/MCOM.001.2100070
https://doi.org/10.1109/MCOM.001.2100070
https://doi.org/10.1109/OJCOMS.2021.3057679
https://doi.org/10.1109/ACCESS.2020.3015289
https://doi.org/10.1109/OJCOMS.2021.3078081
https://doi.org/10.1109/ACCESS.2019.2909490
https://doi.org/10.1016/j.dcan.2020.05.003
https://doi.org/10.3390/s22249957
https://doi.org/10.3390/s22249957
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482503
https://www.ncsc.gov.uk/information/understanding-vulnerabilities
https://www.ncsc.gov.uk/information/understanding-vulnerabilities
https://rhebo.com/en/service/glossar/anomaly-detection-en/
https://rhebo.com/en/service/glossar/anomaly-detection-en/
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html
https://www.cisco.com/c/en/us/products/security/common-cyberattacks.html
https://attack.mitre.org/techniques/T0814/
https://attack.mitre.org/techniques/T0814/
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/COMST.2016.2548426
https://learn-cloudsecurity.cisco.com/umbrella-resources/umbrella/dns-tunneling
https://learn-cloudsecurity.cisco.com/umbrella-resources/umbrella/dns-tunneling

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Y. Ye et al. “A Survey on Malware Detection Using Data Mining Techniques”. In: ACM Computing
Surveys (May 31, 2018). DOI: 10.1145/3073559.

Cisco. What Is Phishing? Examples and Phishing Quiz. URL: https://www.cisco.com/c/
en/us/products/security/email-security/what-is-phishing.html (visited on
11/29/2023).

Cisco. Understanding SQL Injection. URL: https://sec.cloudapps.cisco.com/security/
center/resources/sql_injection.html#1 (visited on 12/07/2023).

IBM. What is a Zero-Day Exploit? | IBM. URL: https://www.ibm.com/topics/zero-day
(visited on 12/07/2023).

H.-J. Liao et al. “Intrusion detection system: A comprehensive review”. In: Journal of Network and
Computer Applications (Jan. 1, 2013). DOI: 10.1016/j. jnca.2012.09.004.

A. L. Buczak and E. Guven. “A Survey of Data Mining and Machine Learning Methods for Cyber
Security Intrusion Detection”. In: IEEE Communications Surveys & Tutorials 18 (2016). DOI: 10.
1109/COMST.2015.2494502.

[. Butun, S. D. Morgera, and R. Sankar. “A Survey of Intrusion Detection Systems in Wireless Sensor
Networks”. In: [EEE Communications Surveys & Tutorials (2014). DOI: 10.1109/SURV.2013.
050113.00191.

A. Khraisat et al. “Survey of intrusion detection systems: techniques, datasets and challenges”. In:
Cybersecurity (July 17, 2019). DOI: 10.1186/s42400-019-0038-7.

R. Singh et al. “Internet attacks and intrusion detection system: A review of the literature”. In: Online
Information Review (Jan. 1, 2017). DOI: 10.1108/0IR-12-2015-0394.

S. Singh and S. Silakari. “A Survey of Cyber Attack Detection Systems”. In: International Journal of
Security and Its Applications (2014). DOI: 10.14257/ijsia.2014.8.1.23.

D. Zhang et al. “A survey on attack detection, estimation and control of industrial cyber—physical
systems”. In: ISA Transactions (Oct. 1, 2021). DOI: 10.1016/j.isatra.2021.01.036.

K. Shaukat et al. “A Survey on Machine Learning Techniques for Cyber Security in the Last Decade”.
In: IEEE Access (2020). DOI: 10.1109/ACCESS.2020.3041951.

Z. Ahmad et al. “Network intrusion detection system: A systematic study of machine learning
and deep learning approaches”. In: Transactions on Emerging Telecommunications Technologies
(2021). DOI: 10.1002/ett.4150.

G. Kocher and G. Kumar. “Machine learning and deep learning methods for intrusion detection
systems: recent developments and challenges”. In: Soft Computing (Aug. 1, 2021). DOI: 10 .
1007/s00500-021-05893-0.

B. Mahesh. “Machine Learning Algorithms -A Review”. In: International Journal of Science and
Research (IJSR) (Jan. 1, 2019). DOI: 10.21275/ART20203995.

P. Mishra et al. “A Detailed Investigation and Analysis of Using Machine Learning Techniques for In-
trusion Detection”. In: IEEE Communications Surveys & Tutorials (2019). DOI: 10.1109/COMST.
2018.2847722.

G. Bonaccorso. Machine Learning Algorithms. Packt Publishing Ltd, July 24, 2017. ISBN: 978-1-
78588-451-1.

M. Mohammed, M. B. Khan, and E. B. M. Bashier. Machine Learning: Algorithms and Applications.
CRC Press, Aug. 19, 2016. ISBN: 978-1-4987-0539-4.

85

https://doi.org/10.1145/3073559
https://www.cisco.com/c/en/us/products/security/email-security/what-is-phishing.html
https://www.cisco.com/c/en/us/products/security/email-security/what-is-phishing.html
https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html#1
https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html#1
https://www.ibm.com/topics/zero-day
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/SURV.2013.050113.00191
https://doi.org/10.1109/SURV.2013.050113.00191
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1108/OIR-12-2015-0394
https://doi.org/10.14257/ijsia.2014.8.1.23
https://doi.org/10.1016/j.isatra.2021.01.036
https://doi.org/10.1109/ACCESS.2020.3041951
https://doi.org/10.1002/ett.4150
https://doi.org/10.1007/s00500-021-05893-0
https://doi.org/10.1007/s00500-021-05893-0
https://doi.org/10.21275/ART20203995
https://doi.org/10.1109/COMST.2018.2847722
https://doi.org/10.1109/COMST.2018.2847722

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

W.-H. Chen, S.-H. Hsu, and H.-P. Shen. “Application of SYM and ANN for intrusion detection”. In:
Computers & Operations Research (Oct. 2005). DOI: 10.1016/j.cor.2004.03.019.

L. Breiman. “Random Forests”. In: Machine Learning (Oct. 1,2001). DOI: 10.1023/A:1010933404324.
(Visited on 07/09/2024).

Z. Ghahramani. “Unsupervised Learning”. In: Advanced Lectures on Machine Learning: ML Sum-
mer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tiibingen, Germany, August 4 - 16,
2003, Revised Lectures. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 72-112. ISBN: 978-3-540-28650-9. DOI: 10.1007/978-3-540-28650-
9 5.

Y. Wu, D. Wei, and J. Feng. “Network Attacks Detection Methods Based on Deep Learning Tech-
niques: A Survey”. In: Security and Communication Networks 2020 (Aug. 28, 2020). Publisher:
Hindawi, e8872923. ISSN: 1939-0114. DOI: 10.1155/2020/8872923.

A. Aldweesh, A. Derhab, and A. Z. Emam. “Deep learning approaches for anomaly-based intru-
sion detection systems: A survey, taxonomy, and open issues”. In: Knowledge-Based Systems 189
(Feb. 15, 2020), p. 105124. ISSN: 0950-7051. DOI: 10.1016/j .knosys.2019.105124.

G. Zaccone and M. R. Karim. Deep Learning with TensorFlow: Explore neural networks and build
intelligent systems with Python, 2nd Edition. Packt Publishing Ltd, Mar. 30, 2018. 483 pp. ISBN:
978-1-78883-183-3.

V. Sharma, S. Rai, and A. Dev. “A Comprehensive Study of Artificial Neural Networks”. In: Inter-
national Journal of Advanced Research in Computer Science and Software Engineering 2 (Sept.
2012). ISSN: 22776451, 2277128X.

K. O’'Shea and R. Nash. An Introduction to Convolutional Neural Networks. Dec. 2, 2015. DOI:
10.48550/arXiv.1511.08458.

M. Mandal. Introduction to Convolutional Neural Networks (CNN). Analytics Vidhya. May 1, 2021.
URL: https : //www . analyticsvidhya . com/blog /2021 /05 / convolutional -
neural-networks-cnn/ (visited on 07/09/2024).

S. Kumar and K. Dutta. “Intrusion detection in mobile ad hoc networks: techniques, systems, and
future challenges”. In: Security and Communication Networks (2016). DOI: 10.1002/sec.1484.

0. Adeleke. “Intrusion Detection: Issues, Problems and Solutions”. In: 2020 3rd International Con-
ference on Information and Computer Technologies (ICICT). IEEE, Mar. 2020. DOI: 10.1109/
ICICT50521.2020.00070.

“Fair Resource Allocation in an Intrusion-Detection System for Edge Computing: Ensuring the Se-
curity of Internet of Things Devices”. In: IEEE Consumer Electronics Magazine (Nov. 2018). DOI:
10.1109/MCE.2018.2851723.

T. Thuvakudimalai and D. A. Kumar. “INTRUSION DETECTION SYSTEMS: A REVIEW". In: Inter-
national Journal of Advanced Research in Computer Science (Aug. 30, 2017). DOI: 10.26483/
ijarcs.v81i8.4703.

J. Arshad et al. “A Review of Performance, Energy and Privacy of Intrusion Detection Systems for
loT". In: Electronics (Apr. 2020). DOI: 10.3390/electronics9040629.

E. Lundin and E. Jonsson. “Anomaly-based intrusion detection: privacy concerns and other prob-
lems”. In: Computer Networks. Recent Advances in Intrusion Detection Systems (Oct. 1, 2000).
DOI: 10.1016/51389-1286(00)00134-1.

86

https://doi.org/10.1016/j.cor.2004.03.019
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1155/2020/8872923
https://doi.org/10.1016/j.knosys.2019.105124
https://doi.org/10.48550/arXiv.1511.08458
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
https://doi.org/10.1002/sec.1484
https://doi.org/10.1109/ICICT50521.2020.00070
https://doi.org/10.1109/ICICT50521.2020.00070
https://doi.org/10.1109/MCE.2018.2851723
https://doi.org/10.26483/ijarcs.v8i8.4703
https://doi.org/10.26483/ijarcs.v8i8.4703
https://doi.org/10.3390/electronics9040629
https://doi.org/10.1016/S1389-1286(00)00134-1

[67] S. Niksefat, P. Kaghazgaran, and B. Sadeghiyan. “Privacy issues in intrusion detection systems: A
taxonomy, survey and future directions”. In: Computer Science Review (Aug. 1, 2017). DOI: 10.
1016/j.cosrev.2017.07.001.

[68] O.f. C. Rights (OCR). Health Information Privacy. June 9, 2021. URL: https://www.hhs.gov/
hipaa/index.html (visited on 01/27/2024).

[69] E. Comission. Data protection in the EU - European Commission. July 4, 2023. URL: https://

commission.europa.eu/law/law-topic/data-protection/data-protection-
eu_en (visited on 01/27/2024).

[70] L. S. Branch. Consolidated federal laws of canada, Personal Information Protection and Electronic
Documents Act. June 21, 2019. URL: https://laws-1lois. justice.gc.ca/eng/acts/
p-8.6/ (visited on 01/27/2024).

[71] A. Thantharate et al. Secure5G: A Deep Learning Framework Towards a Secure Network Slicing in
5G and Beyond. Jan. 1, 2020. DOI: 10.1109/CCWC47524.2020.9031158.

[72] A. Thantharate et al. DeepSlice: A Deep Learning Approach towards an Efficient and Reliable Net-
work Slicing in 5G Networks. Oct. 11, 2019. DOI: 10.1109/UEMCON47517.2019.8993066.

[73] N.A.E.Kuadey et al. “DeepSecure: Detection of Distributed Denial of Service Attacks on 5G Network
Slicing—Deep Learning Approach”. In: IEEE Wireless Communications Letters (Mar. 2022). DOI:
10.1109/LWC.2021.3133479.

[74] |. Sharafaldin et al. Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and
Taxonomy. Oct. 1, 2019. DOI: 10.1109/CCST.2019.8888419.

[75] F. Hussain et al. “A Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks”.
In: IEEE Access (2021). DOI: 10.1109/ACCESS.2021.3131014.

[76] |. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani. Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic Characterization. Jan. 1, 2018. 108 pp. DOI: 10.5220/0006639801080116.

[77]1 N. Koroniotis et al. Towards the development of realistic botnet dataset in the Internet of Things for
network forensic analytics: Bot-loT dataset. Vol. 100. Nov. 1, 2018, pp. 779-796. DOI: 10.1016/
j.future.2019.05.041.

[78] B. Bousalem et al. “Deep Learning-based Approach for DDoS Attacks Detection and Mitigation in
5G and Beyond Mobile Networks”. In: 2022 IEEE 8th International Conference on Network Soft-
warization (NetSoft). Milan, Italy: IEEE, June 27, 2022. ISBN: 978-1-66540-694-9. DOI: 10.1109/
NetSoft54395.2022.9844053.

[79] R. Doriguzzi-Corin et al. “Lucid: A Practical, Lightweight Deep Learning Solution for DDoS Attack
Detection”. In: IEEE Transactions on Network and Service Management 17.2 (June 2020), pp. 876-
889. ISSN: 1932-4537, 2373-7379. DOI: 10.1109/TNSM. 2020.2971776.

[80] O.R. Sanchez et al. “Evaluating ML-based DDoS Detection with Grid Search Hyperparameter Opti-
mization”. In: 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). |IEEE,
June 28, 2021. DOI: 10.1109/NetSoft51509.2021.9492633.

[81] A. Shiravi et al. “Toward developing a systematic approach to generate benchmark datasets for
intrusion detection”. In: Computers & Security 31 (May 1, 2012), pp. 357-374. DOI: 10.1016/
j.cose.2011.12.012

[82] E.G.Z.0.vl.1.1. Zero-touch network and Service Management (ZSM); Reference Architecture. URL:
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_
ZSM002v010101p. pdf.

87

https://doi.org/10.1016/j.cosrev.2017.07.001
https://doi.org/10.1016/j.cosrev.2017.07.001
https://www.hhs.gov/hipaa/index.html
https://www.hhs.gov/hipaa/index.html
https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu_en
https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu_en
https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu_en
https://laws-lois.justice.gc.ca/eng/acts/p-8.6/
https://laws-lois.justice.gc.ca/eng/acts/p-8.6/
https://doi.org/10.1109/CCWC47524.2020.9031158
https://doi.org/10.1109/UEMCON47517.2019.8993066
https://doi.org/10.1109/LWC.2021.3133479
https://doi.org/10.1109/CCST.2019.8888419
https://doi.org/10.1109/ACCESS.2021.3131014
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1109/NetSoft54395.2022.9844053
https://doi.org/10.1109/NetSoft54395.2022.9844053
https://doi.org/10.1109/TNSM.2020.2971776
https://doi.org/10.1109/NetSoft51509.2021.9492633
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1016/j.cose.2011.12.012
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf

[83]

[84]

[85]

[86]

[87]

[88]

M. Liyanage et al. “A survey on Zero touch network and Service Management (ZSM) for 5G and be-
yond networks”. In: Journal of Network and Computer Applications 203 (July 1, 2022), p. 103362.
ISSN: 1084-8045. DOI: 10.1016/j . jnca.2022.103362.

E. G. Z. 0.-1. v1.1.1. Zero-touch network and Service Management (ZSM); Closed-Loop Automation;
Part 1: Enablers. URL: https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/
00901/01.01.01_60/gs_ZSM00901v010101p.pdf.

E. G.Z. 0.-2. v1.1.1. Zero-touch network and Service Management (ZSM); Closed-Loop Automation;
Part 2: Solutions for automation of E2E service and network management use cases. URL: https:
//www .etsi.org/deliver/etsi_gs/ZSM/001_099/00902/01.01.01_60/gs_
ZSM00902v010101p. pdf.

M. S. Khan et al. “SliceSecure: Impact and Detection of DoS/DDoS Attacks on 5G Network Slices”.
In: 2022 IEEE Future Networks World Forum (FNWF). 2022. DOI: 10.1109/FNWF55208.2022.
00117.

C. Coldwell et al. “Machine Learning 5G Attack Detection in Programmable Logic”. In: 2022 IEEE
GLOBECOM Workshops, GC Wkshps 2022 - Proceedings. 2022 IEEE GLOBECOM Workshops, GC
Wkshps 2022 - Proceedings (2023). DOI: 10.1109/GCWkshps56602.2022.10008647.

L. Haaijer. DDoS Packet Capture Collection. 2022. URL: https://github. com/StopDDoS/
packet-captures/tree/main (visited on 07/22/2024).

88

https://doi.org/10.1016/j.jnca.2022.103362
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/00901/01.01.01_60/gs_ZSM00901v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/00901/01.01.01_60/gs_ZSM00901v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/00902/01.01.01_60/gs_ZSM00902v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/00902/01.01.01_60/gs_ZSM00902v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/00902/01.01.01_60/gs_ZSM00902v010101p.pdf
https://doi.org/10.1109/FNWF55208.2022.00117
https://doi.org/10.1109/FNWF55208.2022.00117
https://doi.org/10.1109/GCWkshps56602.2022.10008647
https://github.com/StopDDoS/packet-captures/tree/main
https://github.com/StopDDoS/packet-captures/tree/main

Appendix A
Details Of Results

A.1 ROC Curve Graphics

ROC Curve for Multiclass

True Negative Rate

Figure 30: Random Forest model ROC curve.

89

L0 E— Z
”
”
”
”
”
-
0.8 7
’
o —— Classe 0 (area = 0.97)
E Classe 1 (area = 1.00)
o 0.6 Classe 2 (area = 0.77)
2 7 Classe 3 (area = 0.95)
v +
2 ’/' —— Classe 4 (area = 1.00)
UEJ 0.4 Ry Classe 5 (area = 1.00)
= -~ —— Classe 6 (area = 0.98)
If’ Classe 7 (area = 1.00)
» e Classe 8 (area = 0.96)
0.2 4 ’1’ Classe 9 (area = 0.85)
e —— Classe 10 (area = 1.00)
/’I Classe 11 (area = 0.86)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
True Negative Rate
Figure 29: Decision Tree model ROC curve.
ROC Curve for Multiclass
1.0 >
-~
”
-~
”
’
”
0.8 - .
r
o —— Classe 0 (area = 0.99)
§ Classe 1 (area = 1.00)
o 0.6 Classe 2 (area = 0.91)
E P Classe 3 (area = 1.00)
[%] 2
g ’/’ —— Classe 4 (area = 1.00)
2 a4 - Classe 5 (area = 1.00)
E -~ —— Classe 6 (area = 1.00)
,r’ Classe 7 (area = 1.00)
-~ —— Classe 8 (area = 0.99)
0.2 1 ’4-’ Classe 9 (area = 0.93)
- = Classe 10 (drea = 1.00)
’z’ Classe 11 (area = 0.94)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate

True Positive Rate

ROC Curve for Multiclass

1.0 4

L/ J | | ‘
”
 — -’
-] e
,
| [.
0.8 ri Pt
-~
= Classe 0 (area = 0.86)
Classe 1 (area = 1.00)
0.6 = Classe 2 (area = 0.92)
-7 Classe 3 (area = 0.99)
’/" —— Classe 4 (area = 0.97)
0.4 1 ~” Classe 5 (area = 0.72)
,,’ — Classe 6 (area = 0.95)
PR Classe 7 (area = 0.99)
M —— Classe 8 (area = 0.96)
0.2 4 ,1" Classe 9 (area = 0.85)
- —— Classe 10 (drea = 0.94)
Classe 11 (area = 0.88)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
True Negative Rate
Figure 31: SVM model ROC curve.
ROC Curve for Multiclass
1.0 >
r
J -,
”
-
0.8 PR
I »
—— Class 0 (area = 0.89)
Class 1 {(area = 1.00)
0.6 1 Plonn Class 2 (area = 0.91)
i P Class 3 (area = 1.00)
’/" —— (Class 4 (area = 0.99)
0.4 4 -~ Class 5 (area = 0.99)
’,’ —— Class 6 (area = 0.99)
e Class 7 (area = 0.99)
’,’ = Class 8 (area = 1.00)
0.2 7 [. Class 9 (area = 0.90)
P —— Class 10 (area = 1.00)
Class 11 (area = 0.96)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 32: CNN model ROC curve.

90

Appendix B
Data Objects

B.1 Data Object Sent by Security Data Collection

"key": 43 1,
I
L

"message”:

[

"total chunks": 5,

"chunk_sequece™: 1,

"chunk_data" : " rBUCKFqoAgABAAAAPAAAATCXHKLAG3DzWk I z6AgARQAAKDAWAADYBvngrBAABcCoMgFophilAAAAAAAAAABQAND
QLHCAARAAAAAAAK/ FALyKqATAPAAAADWAAACQSRy 1whNw81pCc+gIAEUAACEWMAAABZbSAKWQAAXAGDIBAWIBOWAAAAAAAAAAUATWG I s

AAAAAAK /F A1z TqATAPAAAADWAAACQS Ry i w81 pCc+gTAEUAACEHMAAABEBSAKWQAAXAGD . . . ",
"checksum”: "097addd6@3af47b754824e3bcd83F9F0"

Figure 33: Example of data object containing a PCAP chunk.

91

B.2 Data Object Sent to Anomaly Detection Engine

key™:48,

"message”: “"security data analytics app/src/pcap/48.pcap”

—t

Figure 34: Example of data object sent to Anomaly Detection Engine containing the path to the PCAP file.

92

B.3 Data Frames

source_ip dest_ip protocol ddos_status ddos_type timestamp
a 172.16.0.5 192.168.50.4 17 True 11.9 2024-97-04 12:33:49.611393
1 192.168.50.4 172.16.0.5 1 False Nah 2024-07-94 12:33:49.611393
584 172.16.0.5 192.168.58.1 6 True 1.9 2024-97-04 12:33:49.611393
585 172.16.0.5 192.168.58.1 6 False Nal 2024-97-04 12:33:49.611393

Figure 35: Example of Data Frame containing the results of flows detection and classification.

ddos_rate ddos_flows total_flows timestamp
e 8.91 533 586 2024-87-84 12:33:49.611393

Figure 36: Example of Data Frame containing the DDoS rate overtime.

class rate ddos_flows_by class total_flows timestamp

MSSQL @.e394ee 21 533 2024-07-04 12:33:49.79389@
1 NTP @.016886 9 533 2024-07-04 12:33:49.79389@
5 UDP @.8450823 24 533 2024-87-84 12:33:49.79389@
6 UDPLag @.822514 12 533 2024-87-84 12:33:49.793890

Figure 37: Example of Data Frame containing the DDoS rate per type.

prediction time accuracy f1 true_positive rate false positive rate true_negative rate false negative rate precision %
@ ©.132283 09.998548 9.998511 9.997338 0.000299 9.999701 9.002662 0.999686
recall mse auc data_source timestamp
@ ©.997338 0.001452 0.99852 10t-16n-D052019-dataset-test.hdf5 2024-97-04 12:33:41.422042

Figure 38: Example of Data Frame containing the results of LUCID model testing.

prediction_time accuracy f1 precision recall mse auc data_source timestamp
@ 09.123578 0.73 0.71 0.7823 8.7325 8.2385 0.9692 10t-10n-D052019-dataset-test.hdf5 2024-07-04 11:01:30.35679

Figure 39: Example of Data Frame containing the results of Random Forest model testing.

93

B.4 Data Object of Threat Report

"id": 1@,

"pcap_id": 48,

"dest _ip": "192.168.560.1",

"source ip": "172.16.8.5",

"statusT: 1,

“protocol™: b,

"ip _count™: 458,

"timestamp”: "2824-87-04T12:00:807",
"prediciton _time": 5.3,

“ddos_type”: 1.8,

“last updated™: "2024-87-84T15:36:457"

Figure 40: Example of data object representing a threat report in JSON format.

94

B.5 Data Objects of Model Testing Results

d
"key": "lucid”,
"message"”: {
"prediction_time™: 8.132283,
"accuracy": ©.998548,
"f1": 8.998511,
"true positive rate™: 8.997338,
"false positive rate": 9.0808299,
"true negative rate™: 8.9959781,
"false negative rate": 9.082662,
"precision”: @.999686,
“"recall™: 8.997338,
"mse”: 8.881452,
"auc":0.99852,
"data_source": "18t-18n-D052819-dataset-test.hdf5",
“timestamp”: "20824-87-84 12:33:41.422842"
¥
1

Figure 41: Example of data object representing the LUCID results sent to Security Decision.

95

"key": "rt",
"message”: {
"prediction_time": ©.09164596,
"accuracy”: @.73251,
"f1": @.711959,
"precision”:0. /82289,
"recall™: 8.73251,
"mse":8.230453,
"data source”: "18t-18n-D052019-dataset-multi-test.hdfb",
"timestamp”: “2024-87-84 11:081:38.35679"

¥
¥

Figure 42: Example of data object representing the Random Forest results sent to Security Decision.

96

Appendix C
Frontend Templates

C.1 Dashboard Templates

DDoS attack detection

DDoS Count DDoS Rate Over Time DDoS Rate by Type Model Test Results

@ i}
Rate by Class

o DoS Flows: 450
Timestamp: 2024-07-08T18:28:59.122873

g o4
MssaL NTP ssop SynFlood TP wop UppLag
Classe

class rate ddos_Flows_by_class total_flous tinestanp

nssaL 0.039309624765478425 2 s 2024-07-08T18:28:59.122873
e 0.016885553470919325 B s 2024-07-08T18:28:59.122673
ssop 0.009380853039399626 s s 2024-07-08T18:28:59.122673
SynFlood 0.8442776735453663 50 s 2024-07-08T18:28:59.122673
et 0.0225140712845551 12 s 2024-07-08T18:28:59.122673
wp 0.0450281425891182 2 s 2024-07-08T18:28:59.122673
opLag 0.0225140712845551 12 s 2024-07-08T18:28:59.122673

DDosS attack detection
DD Cout DDGS Rate Over Time DDGS Rate by Type Model Test Resuls.
« m

LUCID Model Test Results

Random Forest Model Test Results Part 2

timestamp

Figure 44: Dash Tab for Model Test Results.

97

Appendix D
Tooling

D.1 Kafka GUI

#default

_ Hide internal topics v . B Keep search Results PR

Topics Partitions Replications Consumer Groups
Name Last Record Total Factor In Sync Consumer Groups

PCAP_CHUNK 3 hours ago 1 security-data-analytics

acc_alerts

anomaly_detection 3 hours ago security-data-analytics

threats_alert 6.218 KB 3 hours ago

Figure 45: Broker topics in Kafka GUL.

98

) default

Topic: PCAP_CHUNK

Partitions Consumer Groups Configs ACLS

Partition: (All)~ Timestamp U Search: ~ Offsets:~ Time Format:

Headers Schema

Timestamp Partition

3 hours ago
DTt D!
(guMia2L JHITFVQL
0ZGMAYZEAYTK3M:
IPTDObWFALWFT

jVANDI

154X IDTu(

i}

S41LJANCINUO:B1cmA6 2aWN10171bmR1cmluZeNvbnRyb2

1QAAQAA1 EalHrBAABC!

ARCABpycFAABAABLPuKgyBKw(Q X FLUNPTIRST@W6IG1heC1hZ:
NCkxPQOFUSU9003 BodHRwO18vODMu M Q Q 4 UMCBETESBRE! uNT,
LjAgTEdF: K 4uDQ ucClveme6e? 0jp1cma6c2NoZWihcy11cG5uLWIyZ:
VHIhbnNy RQAB1QAAQAALE aWWrBAABC! ODAWDQPEQVRFO1BTYXQs IDAZIESvdiAyMD

0

KL WKgyBK AEAANRG1oK g 2
. Tk1QUi8y

NCKxPO 018vODMUMTO1L{EGOCAXMzZ MDY TWVKaWF SZWSKZX) 615D0p
& Empty Topic 3 Copy Topic 3 Live Tail _

Figure 46: Messages sent in the pcap_chunk topic.

#default

Host Controller Partitions (% of total)
kafka:9092 True 4(100.00%)

Figure 47: Active broker nodes.

99

	Introduction
	Context
	Motivation
	Main Aims
	Main Contributions
	Dissertation Structure

	Study of 5G and 6G networks
	5G Networks
	Overview
	Network Slicing

	6G Networks
	Overview
	The Need for Security
	Openness
	The Role of ML

	Security in 5G Networks
	Security Framing Concepts
	Vulnerabilities
	Anomalies
	Attacks

	Attack Detection Systems
	Intrusion Detection Systems
	Detection methodology
	ML-Based Detection
	Challenges

	Related Work

	Architecture
	Component Architecture
	Attack Detection Approach
	Threat Classification Approach

	Overall System Architecture
	ZSM Architecture

	Implementation
	Technologies and Tools
	Core Technologies
	Libraries and Frameworks

	Models Training
	Dataset description
	Attack Detection Model
	Threat Classification Model

	Implementation Details
	Message Broker
	Data Processing & Transformation Engine
	Anomaly Detection Engine
	Threat Classification Module
	Real-Time Analytics & Stream Processing
	Reporting Module
	Feedback & Optimization Engine
	Alert Module

	Development Process
	Unit Tests
	Integration Tests

	Results and Discussion
	Model's Training and Testing
	Models Evaluation Metrics
	DDoS Detection Model
	Threat Classification Model

	System Evaluation and Testing
	Precision and Efficacy
	Performance
	Resilience

	Conclusions and future work
	Conclusions
	Prospect for future work

	References
	Details Of Results
	ROC Curve Graphics

	Data Objects
	Data Object Sent by Security Data Collection
	Data Object Sent to Anomaly Detection Engine
	Data Frames
	Data Object of Threat Report
	Data Objects of Model Testing Results

	Frontend Templates
	Dashboard Templates

	Tooling
	Kafka GUI

